Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Backbone Colorings of Graphs with Bounded Degree

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F10%3A10028939" target="_blank" >RIV/00216208:11320/10:10028939 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Backbone Colorings of Graphs with Bounded Degree

  • Popis výsledku v původním jazyce

    We study backbone colorings, a variation on classical vertex colorings: Given a graph G and a subgraph H of G (the backbone of G), a backbone coloring for G and H is a proper vertex k-coloring of G in which the colors assigned to adjacent vertices in H differ by at least 2. The minimal integer k for which such a coloring exists is called the backbone chromatic number of G. We show that for a graph G of maximum degree delta where the backbone graph is a d-degenerated subgraph of G, the backbone chromaticnumber is at most delta+d+1 and moreover, in the case when the backbone graph being a matching we prove that the backbone chromatic number is at most delta+1. We also present examples where these bounds are attained.

  • Název v anglickém jazyce

    Backbone Colorings of Graphs with Bounded Degree

  • Popis výsledku anglicky

    We study backbone colorings, a variation on classical vertex colorings: Given a graph G and a subgraph H of G (the backbone of G), a backbone coloring for G and H is a proper vertex k-coloring of G in which the colors assigned to adjacent vertices in H differ by at least 2. The minimal integer k for which such a coloring exists is called the backbone chromatic number of G. We show that for a graph G of maximum degree delta where the backbone graph is a d-degenerated subgraph of G, the backbone chromaticnumber is at most delta+d+1 and moreover, in the case when the backbone graph being a matching we prove that the backbone chromatic number is at most delta+1. We also present examples where these bounds are attained.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/1M0545" target="_blank" >1M0545: Institut Teoretické Informatiky</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2010

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Discrete Applied Mathematics

  • ISSN

    0166-218X

  • e-ISSN

  • Svazek periodika

    158

  • Číslo periodika v rámci svazku

    5

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    9

  • Strana od-do

  • Kód UT WoS článku

    000275582100016

  • EID výsledku v databázi Scopus