The structure of Valdivia compact lines
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F10%3A10049936" target="_blank" >RIV/00216208:11320/10:10049936 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/67985840:_____/10:00342854
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The structure of Valdivia compact lines
Popis výsledku v původním jazyce
We study linearly ordered spaces which are Valdivia compact in their order topology. We find an internal characterization of these spaces and we present a counter-example disproving a conjecture posed earlier by the first author. The conjecture assertedthat a compact line is Valdivia compact if its weight does not exceed $aleph_1$, every point of uncountable character is isolated from one side and every closed first countable subspace is metrizable. It turns out that the last condition is not sufficient. On the other hand, we show that the conjecture is valid if the closure of the set of points of uncountable character is scattered. This improves an earlier result of the first author.
Název v anglickém jazyce
The structure of Valdivia compact lines
Popis výsledku anglicky
We study linearly ordered spaces which are Valdivia compact in their order topology. We find an internal characterization of these spaces and we present a counter-example disproving a conjecture posed earlier by the first author. The conjecture assertedthat a compact line is Valdivia compact if its weight does not exceed $aleph_1$, every point of uncountable character is isolated from one side and every closed first countable subspace is metrizable. It turns out that the last condition is not sufficient. On the other hand, we show that the conjecture is valid if the closure of the set of points of uncountable character is scattered. This improves an earlier result of the first author.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2010
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Topology and its Applications
ISSN
0166-8641
e-ISSN
—
Svazek periodika
157
Číslo periodika v rámci svazku
7
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
10
Strana od-do
—
Kód UT WoS článku
000276840900004
EID výsledku v databázi Scopus
—