Envelopes of open sets and extending holomorphic functions on dual Banach spaces
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F10%3A10049937" target="_blank" >RIV/00216208:11320/10:10049937 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Envelopes of open sets and extending holomorphic functions on dual Banach spaces
Popis výsledku v původním jazyce
We investigate certain envelopes of open sets in dual Banach spaces which are related to extending holomorphic functions. We give a variety of examples of absolutely convex sets showing that the extension is in many cases not possible. We also establishconnections to the study of iterated weak* sequential closures of convex sets in the dual of separable spaces.
Název v anglickém jazyce
Envelopes of open sets and extending holomorphic functions on dual Banach spaces
Popis výsledku anglicky
We investigate certain envelopes of open sets in dual Banach spaces which are related to extending holomorphic functions. We give a variety of examples of absolutely convex sets showing that the extension is in many cases not possible. We also establishconnections to the study of iterated weak* sequential closures of convex sets in the dual of separable spaces.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/IAA100190901" target="_blank" >IAA100190901: Topologické a geometrické struktury v Banachovych prostorech</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2010
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Mathematical Analysis and Applications
ISSN
0022-247X
e-ISSN
—
Svazek periodika
363
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
16
Strana od-do
—
Kód UT WoS článku
000272149700028
EID výsledku v databázi Scopus
—