On the separation of parametric convex polyhedral sets with application in MOLP
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F10%3A10051663" target="_blank" >RIV/00216208:11320/10:10051663 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On the separation of parametric convex polyhedral sets with application in MOLP
Popis výsledku v původním jazyce
We investigate diverse separation properties of two convex polyhedral sets for the case when there are parameters in one row of the constraint matrix. In particular, we deal with the existence, description and stability properties of the separating hyperplanes of such convex polyhedral sets. We present several examples carried out on PC. We are also interested in supporting separation (separating hyperplanes support both the convex polyhedral sets at given faces) and permanent separation (a hyperplane separates the convex polyhedral sets for all feasible parameters). Finally, we show how the developed theory is applicable in multiobjective linear programming.
Název v anglickém jazyce
On the separation of parametric convex polyhedral sets with application in MOLP
Popis výsledku anglicky
We investigate diverse separation properties of two convex polyhedral sets for the case when there are parameters in one row of the constraint matrix. In particular, we deal with the existence, description and stability properties of the separating hyperplanes of such convex polyhedral sets. We present several examples carried out on PC. We are also interested in supporting separation (separating hyperplanes support both the convex polyhedral sets at given faces) and permanent separation (a hyperplane separates the convex polyhedral sets for all feasible parameters). Finally, we show how the developed theory is applicable in multiobjective linear programming.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BB - Aplikovaná statistika, operační výzkum
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2010
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applications of Mathematics
ISSN
0862-7940
e-ISSN
—
Svazek periodika
55
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
21
Strana od-do
—
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—