Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Steady compressible Navier--Stokes--Fourier system in two space dimensions

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F10%3A10051960" target="_blank" >RIV/00216208:11320/10:10051960 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Steady compressible Navier--Stokes--Fourier system in two space dimensions

  • Popis výsledku v původním jazyce

    We study steady flow of a compressible heat conducting viscous fluid in a bounded two-dimensional domain, described by the Navier--Stokes--Fourier system. We assume that the pressure is given by the constitutive equation $p(rho, theta) sim rho^gamma+ rho theta$, where $rho$ is the density and $theta$ is the temperature. For $gamma } 2$, we prove existence of a weak solution to these equations without any assumption on the smallness of the data. The proof uses special approximation of the original problem, which guarantees the pointwise boundedness of the density. Thus we get a solution with density in $L^infty (Omega)$ and temperature and velocity in $W^{1,q} (Omega)$ $forall q { infty$.

  • Název v anglickém jazyce

    Steady compressible Navier--Stokes--Fourier system in two space dimensions

  • Popis výsledku anglicky

    We study steady flow of a compressible heat conducting viscous fluid in a bounded two-dimensional domain, described by the Navier--Stokes--Fourier system. We assume that the pressure is given by the constitutive equation $p(rho, theta) sim rho^gamma+ rho theta$, where $rho$ is the density and $theta$ is the temperature. For $gamma } 2$, we prove existence of a weak solution to these equations without any assumption on the smallness of the data. The proof uses special approximation of the original problem, which guarantees the pointwise boundedness of the density. Thus we get a solution with density in $L^infty (Omega)$ and temperature and velocity in $W^{1,q} (Omega)$ $forall q { infty$.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2010

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Commentationes Mathematicae Universitatis Carolinae

  • ISSN

    0010-2628

  • e-ISSN

  • Svazek periodika

    51

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    CZ - Česká republika

  • Počet stran výsledku

    27

  • Strana od-do

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus