Lower bounds for weak epsilon-nets and stair-convexity
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F11%3A10100316" target="_blank" >RIV/00216208:11320/11:10100316 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/s11856-011-0029-1" target="_blank" >http://dx.doi.org/10.1007/s11856-011-0029-1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11856-011-0029-1" target="_blank" >10.1007/s11856-011-0029-1</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Lower bounds for weak epsilon-nets and stair-convexity
Popis výsledku v původním jazyce
A set N SUBSET OF ? d is called a weak ?-net (with respect to convex sets) for a finite X SUBSET OF ? d if N intersects every convex set C with |X INTERSECTION C| GREATER-THAN OR EQUAL TO ?|X|. For every fixed d GREATER-THAN OR EQUAL TO 2 and every r GREATER-THAN OR EQUAL TO 1 we construct sets X SUBSET OF ? d for which every weak 1/r -net has at least ?(r log dMINUS SIGN 1 r) points; this is the first superlinear lower bound for weak ?-nets in a fixed dimension. The construction is a stretched grid, and convexity in this grid can be analyzed using stair-convexity, a new variant of the usual notion of convexity. We also consider weak ?-nets for the diagonal of our stretched grid in ? d , d GREATER-THAN OR EQUAL TO 3, which is an "intrinsically 1-dimensional" point set. In this case we exhibit slightly superlinear lower bounds (involving the inverse Ackermann function), showing that the upper bounds by Alon, Kaplan, Nivasch, Sharir and Smorodinsky (2008) are not far from the truth in th
Název v anglickém jazyce
Lower bounds for weak epsilon-nets and stair-convexity
Popis výsledku anglicky
A set N SUBSET OF ? d is called a weak ?-net (with respect to convex sets) for a finite X SUBSET OF ? d if N intersects every convex set C with |X INTERSECTION C| GREATER-THAN OR EQUAL TO ?|X|. For every fixed d GREATER-THAN OR EQUAL TO 2 and every r GREATER-THAN OR EQUAL TO 1 we construct sets X SUBSET OF ? d for which every weak 1/r -net has at least ?(r log dMINUS SIGN 1 r) points; this is the first superlinear lower bound for weak ?-nets in a fixed dimension. The construction is a stretched grid, and convexity in this grid can be analyzed using stair-convexity, a new variant of the usual notion of convexity. We also consider weak ?-nets for the diagonal of our stretched grid in ? d , d GREATER-THAN OR EQUAL TO 3, which is an "intrinsically 1-dimensional" point set. In this case we exhibit slightly superlinear lower bounds (involving the inverse Ackermann function), showing that the upper bounds by Alon, Kaplan, Nivasch, Sharir and Smorodinsky (2008) are not far from the truth in th
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/1M0545" target="_blank" >1M0545: Institut Teoretické Informatiky</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2011
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Israel Journal of Mathematics
ISSN
0021-2172
e-ISSN
—
Svazek periodika
182
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
IL - Stát Izrael
Počet stran výsledku
30
Strana od-do
199-228
Kód UT WoS článku
000289109300009
EID výsledku v databázi Scopus
—