On average and highest number of flips in pancake sorting
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F11%3A10100845" target="_blank" >RIV/00216208:11320/11:10100845 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.tcs.2010.11.028" target="_blank" >http://dx.doi.org/10.1016/j.tcs.2010.11.028</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.tcs.2010.11.028" target="_blank" >10.1016/j.tcs.2010.11.028</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On average and highest number of flips in pancake sorting
Popis výsledku v původním jazyce
We are given a stack of pancakes of different sizes and the only allowed operation is to take several pancakes from the top and flip them. The unburnt version requires the pancakes to be sorted by their sizes at the end, while in the burnt version they additionally need to be oriented burnt-side down. We study the largest value of the number of flips needed to sort a stack of n pancakes, both in the unburnt version (f(n)) and in the burnt version (g(n)). We present exact values of f(n) up to n=19 and ofg(n) up to n=17 and disprove a conjecture of Cohen and Blum by showing that the burnt stack -I(15) is not the hardest to sort for n = 15. We also show that sorting a random stack of n unburnt pancakes can be done with at most 17n/12 + O(1) flips on average. The average number of flips of the optimal algorithm for sorting stacks of n burnt pancakes is shown to be between n + Omega(n/log n) and 7n/4 + O(1). We slightly increase the lower bound on g(n) to (3n + 3)/2.
Název v anglickém jazyce
On average and highest number of flips in pancake sorting
Popis výsledku anglicky
We are given a stack of pancakes of different sizes and the only allowed operation is to take several pancakes from the top and flip them. The unburnt version requires the pancakes to be sorted by their sizes at the end, while in the burnt version they additionally need to be oriented burnt-side down. We study the largest value of the number of flips needed to sort a stack of n pancakes, both in the unburnt version (f(n)) and in the burnt version (g(n)). We present exact values of f(n) up to n=19 and ofg(n) up to n=17 and disprove a conjecture of Cohen and Blum by showing that the burnt stack -I(15) is not the hardest to sort for n = 15. We also show that sorting a random stack of n unburnt pancakes can be done with at most 17n/12 + O(1) flips on average. The average number of flips of the optimal algorithm for sorting stacks of n burnt pancakes is shown to be between n + Omega(n/log n) and 7n/4 + O(1). We slightly increase the lower bound on g(n) to (3n + 3)/2.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GD201%2F09%2FH057" target="_blank" >GD201/09/H057: Res Informatica</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2011
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Theoretical Computer Science
ISSN
0304-3975
e-ISSN
—
Svazek periodika
412
Číslo periodika v rámci svazku
8
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
13
Strana od-do
822-834
Kód UT WoS článku
000287295000018
EID výsledku v databázi Scopus
—