Proof Systems that Take Advice
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F11%3A10106381" target="_blank" >RIV/00216208:11320/11:10106381 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.ic.2010.11.006" target="_blank" >http://dx.doi.org/10.1016/j.ic.2010.11.006</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ic.2010.11.006" target="_blank" >10.1016/j.ic.2010.11.006</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Proof Systems that Take Advice
Popis výsledku v původním jazyce
One of the starting points of propositional proof complexity is the seminal paper by Cook and Reckhow [13], where they de?ned propositional proof systems as poly-time computable functions which have all propositional tautologies as their range. Motivatedby provability consequences in bounded arithmetic, Cook and Krajicek [12] have recently started the investigation of proof systems which are computed by poly-time functions using advice. In this paper we concentrate on three fundamental questions regarding this new model. First, we investigate whether a given language L admits a polynomially bounded proof system with advice. Depending on the complexity of the underlying language L and the amount and type of the advice used by the proof system, we obtain di?erent characterizations for this problem. In particular, we show that this question is tightly linked with the question whether L has small nondeterministic instance complexity. The second question concerns the existence of optimal p
Název v anglickém jazyce
Proof Systems that Take Advice
Popis výsledku anglicky
One of the starting points of propositional proof complexity is the seminal paper by Cook and Reckhow [13], where they de?ned propositional proof systems as poly-time computable functions which have all propositional tautologies as their range. Motivatedby provability consequences in bounded arithmetic, Cook and Krajicek [12] have recently started the investigation of proof systems which are computed by poly-time functions using advice. In this paper we concentrate on three fundamental questions regarding this new model. First, we investigate whether a given language L admits a polynomially bounded proof system with advice. Depending on the complexity of the underlying language L and the amount and type of the advice used by the proof system, we obtain di?erent characterizations for this problem. In particular, we show that this question is tightly linked with the question whether L has small nondeterministic instance complexity. The second question concerns the existence of optimal p
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2011
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Information and Computation
ISSN
0890-5401
e-ISSN
—
Svazek periodika
209
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
13
Strana od-do
320-332
Kód UT WoS článku
000287382300005
EID výsledku v databázi Scopus
—