Finite dualities and map-critical graphs on a fixed surface
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F12%3A10104488" target="_blank" >RIV/00216208:11320/12:10104488 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.jctb.2011.06.001" target="_blank" >http://dx.doi.org/10.1016/j.jctb.2011.06.001</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jctb.2011.06.001" target="_blank" >10.1016/j.jctb.2011.06.001</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Finite dualities and map-critical graphs on a fixed surface
Popis výsledku v původním jazyce
Let K be a class of graphs. A pair (F, U) is a finite duality in K if U is an element of K, F is a finite set of graphs, and for any graph G in L we have G {= U if and only if F not equal to or less than G for all F is an element of F where "{=" is the homomorphism order. We also say U is a dual graph in k. We prove that the class of planar graphs has no finite dualities except for two trivial cases. We also prove that the class of toroidal graphs has no 5-colorable dual graphs except for two trivial cases. In a sharp contrast, for a higher genus orientable surface S we show that Thomassen''s result (Thomassen, 1997 [17]) implies that the class, G(S), of all graphs embeddable in S has a number of finite dualities. Equivalently, our first result shows that for every planar core graph H except K(1) and K(4), there are infinitely many minimal planar obstructions for H-coloring (Hell and Nesetril, 1990 [4]), whereas our later result gives a converse of Thomassen''s theorem (Thomassen, 1997
Název v anglickém jazyce
Finite dualities and map-critical graphs on a fixed surface
Popis výsledku anglicky
Let K be a class of graphs. A pair (F, U) is a finite duality in K if U is an element of K, F is a finite set of graphs, and for any graph G in L we have G {= U if and only if F not equal to or less than G for all F is an element of F where "{=" is the homomorphism order. We also say U is a dual graph in k. We prove that the class of planar graphs has no finite dualities except for two trivial cases. We also prove that the class of toroidal graphs has no 5-colorable dual graphs except for two trivial cases. In a sharp contrast, for a higher genus orientable surface S we show that Thomassen''s result (Thomassen, 1997 [17]) implies that the class, G(S), of all graphs embeddable in S has a number of finite dualities. Equivalently, our first result shows that for every planar core graph H except K(1) and K(4), there are infinitely many minimal planar obstructions for H-coloring (Hell and Nesetril, 1990 [4]), whereas our later result gives a converse of Thomassen''s theorem (Thomassen, 1997
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/1M0545" target="_blank" >1M0545: Institut Teoretické Informatiky</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Combinatorial Theory. Series B
ISSN
0095-8956
e-ISSN
—
Svazek periodika
102
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
22
Strana od-do
131-152
Kód UT WoS článku
000297448800011
EID výsledku v databázi Scopus
—