Combining CPU and GPU architectures for fast similarity search
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F12%3A10124107" target="_blank" >RIV/00216208:11320/12:10124107 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/s10619-012-7092-4" target="_blank" >http://dx.doi.org/10.1007/s10619-012-7092-4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10619-012-7092-4" target="_blank" >10.1007/s10619-012-7092-4</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Combining CPU and GPU architectures for fast similarity search
Popis výsledku v původním jazyce
The Signature Quadratic Form Distance on feature signatures represents a flexible distance-based similarity model for effective content-based multimedia retrieval. Although metric indexing approaches are able to speed up query processing by two orders ofmagnitude, their applicability to large-scale multimedia databases containing billions of images is still a challenging issue. In this paper, we propose a parallel approach that balances the utilization of CPU and many-core GPUs for efficient similaritysearch with the Signature Quadratic Form Distance. In particular, we show how to process multiple distance computations and other parts of the search procedure in parallel, achieving maximal performance of the combined CPU/GPU system. The experimental evaluation demonstrates that our approach implemented on a common workstation with 2 GPU cards outperforms traditional parallel implementation on a high-end 48-core NUMA server in terms of efficiency almost by an order of magnitude. If we
Název v anglickém jazyce
Combining CPU and GPU architectures for fast similarity search
Popis výsledku anglicky
The Signature Quadratic Form Distance on feature signatures represents a flexible distance-based similarity model for effective content-based multimedia retrieval. Although metric indexing approaches are able to speed up query processing by two orders ofmagnitude, their applicability to large-scale multimedia databases containing billions of images is still a challenging issue. In this paper, we propose a parallel approach that balances the utilization of CPU and many-core GPUs for efficient similaritysearch with the Signature Quadratic Form Distance. In particular, we show how to process multiple distance computations and other parts of the search procedure in parallel, achieving maximal performance of the combined CPU/GPU system. The experimental evaluation demonstrates that our approach implemented on a common workstation with 2 GPU cards outperforms traditional parallel implementation on a high-end 48-core NUMA server in terms of efficiency almost by an order of magnitude. If we
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
DISTRIBUTED AND PARALLEL DATABASES
ISSN
0926-8782
e-ISSN
—
Svazek periodika
30
Číslo periodika v rámci svazku
3-4
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
29
Strana od-do
179-207
Kód UT WoS článku
000305520200002
EID výsledku v databázi Scopus
—