A QUANTITATIVE VERSION OF JAMES'S COMPACTNESS THEOREM
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F12%3A10127317" target="_blank" >RIV/00216208:11320/12:10127317 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1017/S0013091510000842" target="_blank" >http://dx.doi.org/10.1017/S0013091510000842</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1017/S0013091510000842" target="_blank" >10.1017/S0013091510000842</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A QUANTITATIVE VERSION OF JAMES'S COMPACTNESS THEOREM
Popis výsledku v původním jazyce
We introduce two measures of weak non-compactness Ja_E and Ja that quantify, via distances, the idea of boundary that lies behind James's Compactness Theorem. These measures tell us, for a bounded subset C of a Banach space E and for given x* is an element of E*, how far from E or C one needs to go to find x** in w*-cl(C) with x**(x*) = sup x*(C). A quantitative version of James's Compactness Theorem is proved using Ja_E and Ja, and in particular it yields the following result. Let C be a closed convexbounded subset of a Banach space E and r > 0. If there is an element x_0** in w*-cl(C) whose distance to C is greater than r, then there is x* is an element of E* such that each x** is an element of w*-cl(C) at which sup x*(C) is attained has distance toE greater than 1/2 r. We indeed establish that Ja_E and Ja are equivalent to other measures of weak non-compactness studied in the literature. We also collect particular cases and examples showing when the inequalities between the differ
Název v anglickém jazyce
A QUANTITATIVE VERSION OF JAMES'S COMPACTNESS THEOREM
Popis výsledku anglicky
We introduce two measures of weak non-compactness Ja_E and Ja that quantify, via distances, the idea of boundary that lies behind James's Compactness Theorem. These measures tell us, for a bounded subset C of a Banach space E and for given x* is an element of E*, how far from E or C one needs to go to find x** in w*-cl(C) with x**(x*) = sup x*(C). A quantitative version of James's Compactness Theorem is proved using Ja_E and Ja, and in particular it yields the following result. Let C be a closed convexbounded subset of a Banach space E and r > 0. If there is an element x_0** in w*-cl(C) whose distance to C is greater than r, then there is x* is an element of E* such that each x** is an element of w*-cl(C) at which sup x*(C) is attained has distance toE greater than 1/2 r. We indeed establish that Ja_E and Ja are equivalent to other measures of weak non-compactness studied in the literature. We also collect particular cases and examples showing when the inequalities between the differ
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/IAA100190901" target="_blank" >IAA100190901: Topologické a geometrické struktury v Banachovych prostorech</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Proceedings of the Edinburgh Mathematical Society
ISSN
0013-0915
e-ISSN
—
Svazek periodika
55
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
18
Strana od-do
369-386
Kód UT WoS článku
000303129100006
EID výsledku v databázi Scopus
—