On countable tightness and the Lindelöf property in non-Archimedean Banach spaces
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F18%3A00488913" target="_blank" >RIV/67985840:_____/18:00488913 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On countable tightness and the Lindelöf property in non-Archimedean Banach spaces
Popis výsledku v původním jazyce
Let K be a non-archimedean valued field and let E be a non-archimedean Banach space over K. By E-w we denote the space E equipped with its weak topology and by E-w*(*) the dual space E* equipped with its weak* topology. Several results about countable tightness and the Lindelof property for E-w and E-w*(*) are provided. A key point is to prove that for a large class of infinite-dimensional polar Banach spaces E, countable tightness of E-w or E-w*(*) implies separability of K. As a consequence we obtain the following two characterizations of K : n(a) A non-archimedean valued field K is locally compact if and only if for every Banach space E over K the space E-w has countable tightness if and only if for every Banach space E over K the space E-w*(*) has the Lindelof property. n(b) A non-archimedean valued separable field K is spherically complete if and only if every Banach space E over K for which E-w has the Lindelof property must be separable if and only if every Banach space E over K for which E-w*(*) has countable tightness must be separable. Both results show how essentially different are non-archimedean counterparts from the 'classical' corresponding theorems for Banach spaces over the real or complex field.
Název v anglickém jazyce
On countable tightness and the Lindelöf property in non-Archimedean Banach spaces
Popis výsledku anglicky
Let K be a non-archimedean valued field and let E be a non-archimedean Banach space over K. By E-w we denote the space E equipped with its weak topology and by E-w*(*) the dual space E* equipped with its weak* topology. Several results about countable tightness and the Lindelof property for E-w and E-w*(*) are provided. A key point is to prove that for a large class of infinite-dimensional polar Banach spaces E, countable tightness of E-w or E-w*(*) implies separability of K. As a consequence we obtain the following two characterizations of K : n(a) A non-archimedean valued field K is locally compact if and only if for every Banach space E over K the space E-w has countable tightness if and only if for every Banach space E over K the space E-w*(*) has the Lindelof property. n(b) A non-archimedean valued separable field K is spherically complete if and only if every Banach space E over K for which E-w has the Lindelof property must be separable if and only if every Banach space E over K for which E-w*(*) has countable tightness must be separable. Both results show how essentially different are non-archimedean counterparts from the 'classical' corresponding theorems for Banach spaces over the real or complex field.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GF16-34860L" target="_blank" >GF16-34860L: Logika a topologie v Banachových prostorech</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Convex Analysis
ISSN
0944-6532
e-ISSN
—
Svazek periodika
25
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
19
Strana od-do
181-199
Kód UT WoS článku
000428115600011
EID výsledku v databázi Scopus
2-s2.0-85045912031