Almost free modules and Mittag-Leffler conditions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F12%3A10128135" target="_blank" >RIV/00216208:11320/12:10128135 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.aim.2012.02.013" target="_blank" >http://dx.doi.org/10.1016/j.aim.2012.02.013</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.aim.2012.02.013" target="_blank" >10.1016/j.aim.2012.02.013</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Almost free modules and Mittag-Leffler conditions
Popis výsledku v původním jazyce
Drinfeld recently suggested to replace projective modules by the flat Mittag-Leffler ones in the definition of an infinite dimensional vector bundle on a scheme X (Drinfeld, 2006 [8]). Two questions arise: (1) What is the structure of the class D of allflat Mittag-Leffler modules over a general ring? (2) Can flat Mittag-Leffler modules be used to build a Quillen model category structure on the category of all chain complexes of quasi-coherent sheaves on X? We answer (1) by showing that a module M is flat Mittag-Leffler, if and only if M is N-1-projective in the sense of Eklof and Mekler (2002) [10]. We use this to characterize the rings such that Disclosed under products, and relate the classes of all Mittag-Leffler, strict Mittag-Leffler, and separable modules. Then we prove that the class D is not deconstructible for any non-right perfect ring. So unlike the classes of all projective and flat modules, the class D does not admit the homotopy theory tools developed recently by Hovey (
Název v anglickém jazyce
Almost free modules and Mittag-Leffler conditions
Popis výsledku anglicky
Drinfeld recently suggested to replace projective modules by the flat Mittag-Leffler ones in the definition of an infinite dimensional vector bundle on a scheme X (Drinfeld, 2006 [8]). Two questions arise: (1) What is the structure of the class D of allflat Mittag-Leffler modules over a general ring? (2) Can flat Mittag-Leffler modules be used to build a Quillen model category structure on the category of all chain complexes of quasi-coherent sheaves on X? We answer (1) by showing that a module M is flat Mittag-Leffler, if and only if M is N-1-projective in the sense of Eklof and Mekler (2002) [10]. We use this to characterize the rings such that Disclosed under products, and relate the classes of all Mittag-Leffler, strict Mittag-Leffler, and separable modules. Then we prove that the class D is not deconstructible for any non-right perfect ring. So unlike the classes of all projective and flat modules, the class D does not admit the homotopy theory tools developed recently by Hovey (
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA201%2F09%2F0816" target="_blank" >GA201/09/0816: Algebraické metody teorie reprezentací (aproximace, realizace a omezení)</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Advances in Mathematics
ISSN
0001-8708
e-ISSN
—
Svazek periodika
229
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
32
Strana od-do
3436-3467
Kód UT WoS článku
000301904100010
EID výsledku v databázi Scopus
—