Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Optimizing semantic granularity for NLP - report on a lexicographic experiment

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F12%3A10130036" target="_blank" >RIV/00216208:11320/12:10130036 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Optimizing semantic granularity for NLP - report on a lexicographic experiment

  • Popis výsledku v původním jazyce

    Experiments with semantic annotation based on the Corpus pattern Analysis and the lexical resource PDEV (Hanks and Pustejovsky, 2005), revealed a need of an evaluation measure that would identify the optimum relation between the semantic granularity of the semantic categories in the description of a verb and the reliability of the annotation expressed by the interannotator agreement (IAA). We have introduced the Reliable Information Gain (RG), which computes this relation for each tag selected by the annotators and relates it to the entry as a whole, suggesting merges of unreliable tags whenever it would increase the information gain of the entire tagset (the number of semantic categories in an entry). The merges suggested in our 19-verb sample correspond with common sense. One of the possible applications of this measure is quality management of the entries in a lexical resource.

  • Název v anglickém jazyce

    Optimizing semantic granularity for NLP - report on a lexicographic experiment

  • Popis výsledku anglicky

    Experiments with semantic annotation based on the Corpus pattern Analysis and the lexical resource PDEV (Hanks and Pustejovsky, 2005), revealed a need of an evaluation measure that would identify the optimum relation between the semantic granularity of the semantic categories in the description of a verb and the reliability of the annotation expressed by the interannotator agreement (IAA). We have introduced the Reliable Information Gain (RG), which computes this relation for each tag selected by the annotators and relates it to the entry as a whole, suggesting merges of unreliable tags whenever it would increase the information gain of the entire tagset (the number of semantic categories in an entry). The merges suggested in our 19-verb sample correspond with common sense. One of the possible applications of this measure is quality management of the entries in a lexical resource.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    IN - Informatika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2012

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the 15th EURALEX International Congress

  • ISBN

    978-82-303-2228-4

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    9

  • Strana od-do

    523-531

  • Název nakladatele

    Department of Linguistics and Scandinavian Studies, University of Oslo

  • Místo vydání

    Oslo, Norway

  • Místo konání akce

    Oslo, Norway

  • Datum konání akce

    7. 8. 2012

  • Typ akce podle státní příslušnosti

    CST - Celostátní akce

  • Kód UT WoS článku