Hybrid Combination of Constituency and Dependency Trees into an Ensemble Dependency Parser
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F12%3A10130050" target="_blank" >RIV/00216208:11320/12:10130050 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.aclweb.org/anthology/W/W12/W12-0503" target="_blank" >http://www.aclweb.org/anthology/W/W12/W12-0503</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Hybrid Combination of Constituency and Dependency Trees into an Ensemble Dependency Parser
Popis výsledku v původním jazyce
Dependency parsing has made many advancements in recent years, in particular for English. There are a few dependency parsers that achieve comparable accuracy scores with each other but with very different types of errors. This paper examines creating a new dependency structure through ensemble learning using a hybrid of the outputs of various parsers. We combine all tree outputs into a weighted edge graph, using 4 weighting mechanisms. The weighted edge graph is the input into our ensemble system and isa hybrid of very different parsing techniques (constituent parsers, transition-based dependency parsers, and a graph-based parser). From this graph we take a maximum spanning tree. We examine the new dependency structure in terms of accuracy and errorson individual part-of-speech values. The results indicate that using a greater number of more varied parsers will improve accuracy results. The combined ensemble system, using 5 parsers based on 3 different parsing techniques, achieves an
Název v anglickém jazyce
Hybrid Combination of Constituency and Dependency Trees into an Ensemble Dependency Parser
Popis výsledku anglicky
Dependency parsing has made many advancements in recent years, in particular for English. There are a few dependency parsers that achieve comparable accuracy scores with each other but with very different types of errors. This paper examines creating a new dependency structure through ensemble learning using a hybrid of the outputs of various parsers. We combine all tree outputs into a weighted edge graph, using 4 weighting mechanisms. The weighted edge graph is the input into our ensemble system and isa hybrid of very different parsing techniques (constituent parsers, transition-based dependency parsers, and a graph-based parser). From this graph we take a maximum spanning tree. We examine the new dependency structure in terms of accuracy and errorson individual part-of-speech values. The results indicate that using a greater number of more varied parsers will improve accuracy results. The combined ensemble system, using 5 parsers based on 3 different parsing techniques, achieves an
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
R - Projekt Ramcoveho programu EK
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the Workshop on Innovative Hybrid Approaches to the Processing of Textual Data
ISBN
978-1-937284-19-0
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
19-26
Název nakladatele
Association for Computational Linguistics
Místo vydání
Avignon, France
Místo konání akce
Avignon, France
Datum konání akce
23. 4. 2012
Typ akce podle státní příslušnosti
CST - Celostátní akce
Kód UT WoS článku
—