Creating Hybrid Dependency Parsers for Syntax-Based MT
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10335587" target="_blank" >RIV/00216208:11320/16:10335587 - isvavai.cz</a>
Výsledek na webu
<a href="http://link.springer.com/book/10.1007%2F978-3-319-21311-8" target="_blank" >http://link.springer.com/book/10.1007%2F978-3-319-21311-8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-21311-8" target="_blank" >10.1007/978-3-319-21311-8</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Creating Hybrid Dependency Parsers for Syntax-Based MT
Popis výsledku v původním jazyce
Dependency parsers are almost ubiquitously evaluated on their accuracy scores, these scores say nothing of the complexity and usefulness of the resulting structures. As dependency parses are basic structures in which other systems are built upon, it would seem more reasonable to judge these parsers down the NLP pipeline. In this chapter, we will discuss how different forms and different hybrid combinations of dependency parses effect the overall output of Syntax-Based machine translation both through automatic and manual evaluation. We show results from a variety of individual parsers, including dependency and constituent parsers, and describe multiple ensemble parsing techniques with their overall effect on the Machine Translation system. We show that parsers' UAS scores are more correlated to the NIST evaluation metric than to the BLEU Metric, however we see increases in both metrics. To truly see the effect of hybrid dependency parsers on machine translation, we will describe and evaluate a combine
Název v anglickém jazyce
Creating Hybrid Dependency Parsers for Syntax-Based MT
Popis výsledku anglicky
Dependency parsers are almost ubiquitously evaluated on their accuracy scores, these scores say nothing of the complexity and usefulness of the resulting structures. As dependency parses are basic structures in which other systems are built upon, it would seem more reasonable to judge these parsers down the NLP pipeline. In this chapter, we will discuss how different forms and different hybrid combinations of dependency parses effect the overall output of Syntax-Based machine translation both through automatic and manual evaluation. We show results from a variety of individual parsers, including dependency and constituent parsers, and describe multiple ensemble parsing techniques with their overall effect on the Machine Translation system. We show that parsers' UAS scores are more correlated to the NIST evaluation metric than to the BLEU Metric, however we see increases in both metrics. To truly see the effect of hybrid dependency parsers on machine translation, we will describe and evaluate a combine
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
AI - Jazykověda
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/LM2015071" target="_blank" >LM2015071: Jazyková výzkumná infrastruktura v České republice</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Hybrid Approaches to Machine Translation
ISBN
978-3-319-21310-1
Počet stran výsledku
30
Strana od-do
161-190
Počet stran knihy
205
Název nakladatele
Springer International Publishing
Místo vydání
Switzerland
Kód UT WoS kapitoly
—