Efficient Indexing of Similarity Models with Inequality Symbolic Regression
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F13%3A10139515" target="_blank" >RIV/00216208:11320/13:10139515 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1145/2463372.2463487" target="_blank" >http://dx.doi.org/10.1145/2463372.2463487</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/2463372.2463487" target="_blank" >10.1145/2463372.2463487</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Efficient Indexing of Similarity Models with Inequality Symbolic Regression
Popis výsledku v původním jazyce
The increasing amount of available unstructured content introduced a new concept of searching for information - the content-based retrieval. The principle behind is that the objects are compared based on their content which is far more complex than simple text or metadata based searching. Many indexing techniques arose to provide an efficient and effective similarity searching. However, these methods are restricted to a specific domain such as the metric space model. If this prerequisite is not fulfilled, indexing cannot be used, while each similarity search query degrades to sequential scanning which is unacceptable for large datasets. Inspired by previous successful results, we decided to apply the principles of genetic programming to the area of database indexing. We developed the GP-SIMDEX which is a universal framework that is capable of finding precise and efficient indexing methods for similarity searching for any given similarity data. For this purpose, we introduce the inequal
Název v anglickém jazyce
Efficient Indexing of Similarity Models with Inequality Symbolic Regression
Popis výsledku anglicky
The increasing amount of available unstructured content introduced a new concept of searching for information - the content-based retrieval. The principle behind is that the objects are compared based on their content which is far more complex than simple text or metadata based searching. Many indexing techniques arose to provide an efficient and effective similarity searching. However, these methods are restricted to a specific domain such as the metric space model. If this prerequisite is not fulfilled, indexing cannot be used, while each similarity search query degrades to sequential scanning which is unacceptable for large datasets. Inspired by previous successful results, we decided to apply the principles of genetic programming to the area of database indexing. We developed the GP-SIMDEX which is a universal framework that is capable of finding precise and efficient indexing methods for similarity searching for any given similarity data. For this purpose, we introduce the inequal
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
GECCO'13: PROCEEDINGS OF THE 2013 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE
ISBN
978-1-4503-1963-8
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
901-908
Název nakladatele
ACM
Místo vydání
NEW YORK
Místo konání akce
Amsterdam
Datum konání akce
6. 7. 2013
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000321981300113