Graph sharing games: Complexity and connectivity
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F13%3A10141896" target="_blank" >RIV/00216208:11320/13:10141896 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.tcs.2012.12.029" target="_blank" >http://dx.doi.org/10.1016/j.tcs.2012.12.029</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.tcs.2012.12.029" target="_blank" >10.1016/j.tcs.2012.12.029</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Graph sharing games: Complexity and connectivity
Popis výsledku v původním jazyce
We study the following combinatorial game played by two players, Alice and Bob, which generalizes the pizza game considered by Brown, Winkler and others. Given a connected graph G with non-negative weights assigned to its vertices, the players alternately take one vertex of G in each turn. The first turn is Alice's. The vertices are to be taken according to one (or both) of the following two rules: (T) the subgraph of G induced by the taken vertices is connected during the whole game, (R) the subgraph of G induced by the remaining vertices is connected during the whole game. We show that if rules (T) and/or (R) are required then for every epsilon > 0 and for every k }= 1 there is a k-connected graph G for which Bob has a strategy to obtain (1 - epsilon) of the total weight of the vertices. This contrasts with the original pizza game played on a cycle, where Alice is known to have a strategy to obtain four-ninths of the total weight. We show that the problem of deciding whether Alice ha
Název v anglickém jazyce
Graph sharing games: Complexity and connectivity
Popis výsledku anglicky
We study the following combinatorial game played by two players, Alice and Bob, which generalizes the pizza game considered by Brown, Winkler and others. Given a connected graph G with non-negative weights assigned to its vertices, the players alternately take one vertex of G in each turn. The first turn is Alice's. The vertices are to be taken according to one (or both) of the following two rules: (T) the subgraph of G induced by the taken vertices is connected during the whole game, (R) the subgraph of G induced by the remaining vertices is connected during the whole game. We show that if rules (T) and/or (R) are required then for every epsilon > 0 and for every k }= 1 there is a k-connected graph G for which Bob has a strategy to obtain (1 - epsilon) of the total weight of the vertices. This contrasts with the original pizza game played on a cycle, where Alice is known to have a strategy to obtain four-ninths of the total weight. We show that the problem of deciding whether Alice ha
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Centrum excelence - Institut teoretické informatiky (CE-ITI)</a><br>
Návaznosti
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Theoretical Computer Science
ISSN
0304-3975
e-ISSN
—
Svazek periodika
494
Číslo periodika v rámci svazku
July
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
14
Strana od-do
49-62
Kód UT WoS článku
000321422500006
EID výsledku v databázi Scopus
—