Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Constant-factor approximation of the domination number in sparse graphs

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F13%3A10159005" target="_blank" >RIV/00216208:11320/13:10159005 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1016/j.ejc.2012.12.004" target="_blank" >http://dx.doi.org/10.1016/j.ejc.2012.12.004</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.ejc.2012.12.004" target="_blank" >10.1016/j.ejc.2012.12.004</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Constant-factor approximation of the domination number in sparse graphs

  • Popis výsledku v původním jazyce

    The k-domination number of a graph is the minimum size of a set D such that every vertex of G is at distance at most k from D. We give a linear-time constant-factor algorithm for approximation of the k-domination number in classes of graphs with boundedexpansion, which include e.g. proper minor-closed graph classes, proper classes closed on topological minors and classes of graphs that can be drawn on a fixed surface with bounded number of crossings on each edge. The algorithm is based on the followingapproximate min-max characterization. A subset A of vertices of a graph G is d-independent if the distance between each two vertices in A is greater than d. Note that the size of the largest 2k-independent set is a lower bound for the k-domination number. We show that every graph from a fixed class with bounded expansion contains a 2k-independent set A and a k-dominating set D such that vertical bar D vertical bar = 0(vertical bar A vertical bar), and these sets can be found in linear t

  • Název v anglickém jazyce

    Constant-factor approximation of the domination number in sparse graphs

  • Popis výsledku anglicky

    The k-domination number of a graph is the minimum size of a set D such that every vertex of G is at distance at most k from D. We give a linear-time constant-factor algorithm for approximation of the k-domination number in classes of graphs with boundedexpansion, which include e.g. proper minor-closed graph classes, proper classes closed on topological minors and classes of graphs that can be drawn on a fixed surface with bounded number of crossings on each edge. The algorithm is based on the followingapproximate min-max characterization. A subset A of vertices of a graph G is d-independent if the distance between each two vertices in A is greater than d. Note that the size of the largest 2k-independent set is a lower bound for the k-domination number. We show that every graph from a fixed class with bounded expansion contains a 2k-independent set A and a k-dominating set D such that vertical bar D vertical bar = 0(vertical bar A vertical bar), and these sets can be found in linear t

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2013

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    European Journal of Combinatorics

  • ISSN

    0195-6698

  • e-ISSN

  • Svazek periodika

    34

  • Číslo periodika v rámci svazku

    5

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    8

  • Strana od-do

    833-840

  • Kód UT WoS článku

    000315936500004

  • EID výsledku v databázi Scopus