Constant-factor approximation of the domination number in sparse graphs
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F13%3A10159005" target="_blank" >RIV/00216208:11320/13:10159005 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.ejc.2012.12.004" target="_blank" >http://dx.doi.org/10.1016/j.ejc.2012.12.004</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ejc.2012.12.004" target="_blank" >10.1016/j.ejc.2012.12.004</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Constant-factor approximation of the domination number in sparse graphs
Popis výsledku v původním jazyce
The k-domination number of a graph is the minimum size of a set D such that every vertex of G is at distance at most k from D. We give a linear-time constant-factor algorithm for approximation of the k-domination number in classes of graphs with boundedexpansion, which include e.g. proper minor-closed graph classes, proper classes closed on topological minors and classes of graphs that can be drawn on a fixed surface with bounded number of crossings on each edge. The algorithm is based on the followingapproximate min-max characterization. A subset A of vertices of a graph G is d-independent if the distance between each two vertices in A is greater than d. Note that the size of the largest 2k-independent set is a lower bound for the k-domination number. We show that every graph from a fixed class with bounded expansion contains a 2k-independent set A and a k-dominating set D such that vertical bar D vertical bar = 0(vertical bar A vertical bar), and these sets can be found in linear t
Název v anglickém jazyce
Constant-factor approximation of the domination number in sparse graphs
Popis výsledku anglicky
The k-domination number of a graph is the minimum size of a set D such that every vertex of G is at distance at most k from D. We give a linear-time constant-factor algorithm for approximation of the k-domination number in classes of graphs with boundedexpansion, which include e.g. proper minor-closed graph classes, proper classes closed on topological minors and classes of graphs that can be drawn on a fixed surface with bounded number of crossings on each edge. The algorithm is based on the followingapproximate min-max characterization. A subset A of vertices of a graph G is d-independent if the distance between each two vertices in A is greater than d. Note that the size of the largest 2k-independent set is a lower bound for the k-domination number. We show that every graph from a fixed class with bounded expansion contains a 2k-independent set A and a k-dominating set D such that vertical bar D vertical bar = 0(vertical bar A vertical bar), and these sets can be found in linear t
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
European Journal of Combinatorics
ISSN
0195-6698
e-ISSN
—
Svazek periodika
34
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
8
Strana od-do
833-840
Kód UT WoS článku
000315936500004
EID výsledku v databázi Scopus
—