Additive non-approximability of chromatic number in proper minor-closed classes
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10473769" target="_blank" >RIV/00216208:11320/23:10473769 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=recjS6~p92" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=recjS6~p92</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jctb.2020.09.003" target="_blank" >10.1016/j.jctb.2020.09.003</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Additive non-approximability of chromatic number in proper minor-closed classes
Popis výsledku v původním jazyce
Robin Thomas asked whether for every proper minor-closed class G, there exists a polynomial-time algorithm approximat-ing the chromatic number of graphs from G up to a constant additive error independent on the class G. We show this is not the case: unless P = NP, for every integer k > 1, there is no polynomial-time algorithm to color a K4k+1-minor-free graph G using at most chi(G) + k - 1 colors. More generally, for every k > 1 and 1 < beta < 4/3, there is no polynomial -time algorithm to color a K4k+1-minor-free graph G using less than beta chi(G) + (4 - 3 beta)k colors. As far as we know, this is the first non-trivial non-approximability result regarding the chromatic number in proper minor-closed classes.Furthermore, we give somewhat weaker non-approximability bound for K4k+1-minor-free graphs with no cliques of size 4. On the positive side, we present additive approximation algorithm whose error depends on the apex number of the forbidden minor, and an algorithm with additive error 6 under the additional assumption that the graph has no 4-cycles.(c) 2020 Elsevier Inc. All rights reserved.
Název v anglickém jazyce
Additive non-approximability of chromatic number in proper minor-closed classes
Popis výsledku anglicky
Robin Thomas asked whether for every proper minor-closed class G, there exists a polynomial-time algorithm approximat-ing the chromatic number of graphs from G up to a constant additive error independent on the class G. We show this is not the case: unless P = NP, for every integer k > 1, there is no polynomial-time algorithm to color a K4k+1-minor-free graph G using at most chi(G) + k - 1 colors. More generally, for every k > 1 and 1 < beta < 4/3, there is no polynomial -time algorithm to color a K4k+1-minor-free graph G using less than beta chi(G) + (4 - 3 beta)k colors. As far as we know, this is the first non-trivial non-approximability result regarding the chromatic number in proper minor-closed classes.Furthermore, we give somewhat weaker non-approximability bound for K4k+1-minor-free graphs with no cliques of size 4. On the positive side, we present additive approximation algorithm whose error depends on the apex number of the forbidden minor, and an algorithm with additive error 6 under the additional assumption that the graph has no 4-cycles.(c) 2020 Elsevier Inc. All rights reserved.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-04611S" target="_blank" >GA17-04611S: Ramseyovské aspekty barvení grafů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Combinatorial Theory. Series B
ISSN
0095-8956
e-ISSN
1096-0902
Svazek periodika
158
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
19
Strana od-do
74-92
Kód UT WoS článku
000901805500004
EID výsledku v databázi Scopus
2-s2.0-85091824420