Extending continuous maps: polynomiality and undecidability
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F13%3A10172788" target="_blank" >RIV/00216208:11320/13:10172788 - isvavai.cz</a>
Výsledek na webu
<a href="http://dl.acm.org/citation.cfm?id=2488683&CFID=274423984&CFTOKEN=57736595" target="_blank" >http://dl.acm.org/citation.cfm?id=2488683&CFID=274423984&CFTOKEN=57736595</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/2488608.2488683" target="_blank" >10.1145/2488608.2488683</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Extending continuous maps: polynomiality and undecidability
Popis výsledku v původním jazyce
We consider several basic problems of algebraic topology, with connections to combinatorial and geometric questions, from the point of view of computational complexity. The extension problem asks, given topological spaces X,Y, a subspace A SUBSET OF OR EQUAL TO X, and a (continuous) map f:A -> Y, whether f can be extended to a map X -> Y. For computational purposes, we assume that X and Y are represented as finite simplicial complexes, A is a subcomplex of X, and f is given as a simplicial map. In this generality the problem is undecidable, as follows from Novikov's result from the 1950s on uncomputability of the fundamental group ?1(Y). We thus study the problem under the assumption that, for some k GREATER-THAN OR EQUAL TO 2, Y is (k-1)-connected;informally, this means that Y has "no holes up to dimension k-1" i.e., the first k-1 homotopy groups of Y vanish (a basic example of such a Y is the sphere Sk). We prove that, on the one hand, this problem is still undecidable for dim X=2
Název v anglickém jazyce
Extending continuous maps: polynomiality and undecidability
Popis výsledku anglicky
We consider several basic problems of algebraic topology, with connections to combinatorial and geometric questions, from the point of view of computational complexity. The extension problem asks, given topological spaces X,Y, a subspace A SUBSET OF OR EQUAL TO X, and a (continuous) map f:A -> Y, whether f can be extended to a map X -> Y. For computational purposes, we assume that X and Y are represented as finite simplicial complexes, A is a subcomplex of X, and f is given as a simplicial map. In this generality the problem is undecidable, as follows from Novikov's result from the 1950s on uncomputability of the fundamental group ?1(Y). We thus study the problem under the assumption that, for some k GREATER-THAN OR EQUAL TO 2, Y is (k-1)-connected;informally, this means that Y has "no holes up to dimension k-1" i.e., the first k-1 homotopy groups of Y vanish (a basic example of such a Y is the sphere Sk). We prove that, on the one hand, this problem is still undecidable for dim X=2
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Centrum excelence - Institut teoretické informatiky (CE-ITI)</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 45th annual ACM symposium on Symposium on theory of computing
ISBN
978-1-4503-2029-0
ISSN
—
e-ISSN
—
Počet stran výsledku
10
Strana od-do
595-604
Název nakladatele
ACM
Místo vydání
New York, NY, USA
Místo konání akce
Palo Alto, USA
Datum konání akce
1. 6. 2013
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—