Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Extendability of Continuous Maps Is Undecidable

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F14%3A10286489" target="_blank" >RIV/00216208:11320/14:10286489 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00216224:14310/14:00073472

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1007/s00454-013-9551-8" target="_blank" >http://dx.doi.org/10.1007/s00454-013-9551-8</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00454-013-9551-8" target="_blank" >10.1007/s00454-013-9551-8</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Extendability of Continuous Maps Is Undecidable

  • Popis výsledku v původním jazyce

    We consider two basic problems of algebraic topology: the extension problem and the computation of higher homotopy groups, from the point of view of computability and computational complexity. The extension problem is the following: Given topological spaces X and Y, a subspace AaS dagger X, and a (continuous) map f:A -> Y, decide whether f can be extended to a continuous map . All spaces are given as finite simplicial complexes, and the map f is simplicial. Recent positive algorithmic results, proved ina series of companion papers, show that for (k-1)-connected Y, ka parts per thousand yen2, the extension problem is algorithmically solvable if the dimension of X is at most 2k-1, and even in polynomial time when k is fixed. Here we show that the condition cannot be relaxed: for , the extension problem with (k-1)-connected Y becomes undecidable. Moreover, either the target space Y or the pair (X,A) can be fixed in such a way that the problem remains undecidable. Our second result, a str

  • Název v anglickém jazyce

    Extendability of Continuous Maps Is Undecidable

  • Popis výsledku anglicky

    We consider two basic problems of algebraic topology: the extension problem and the computation of higher homotopy groups, from the point of view of computability and computational complexity. The extension problem is the following: Given topological spaces X and Y, a subspace AaS dagger X, and a (continuous) map f:A -> Y, decide whether f can be extended to a continuous map . All spaces are given as finite simplicial complexes, and the map f is simplicial. Recent positive algorithmic results, proved ina series of companion papers, show that for (k-1)-connected Y, ka parts per thousand yen2, the extension problem is algorithmically solvable if the dimension of X is at most 2k-1, and even in polynomial time when k is fixed. Here we show that the condition cannot be relaxed: for , the extension problem with (k-1)-connected Y becomes undecidable. Moreover, either the target space Y or the pair (X,A) can be fixed in such a way that the problem remains undecidable. Our second result, a str

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BD - Teorie informace

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2014

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Discrete and Computational Geometry

  • ISSN

    0179-5376

  • e-ISSN

  • Svazek periodika

    51

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    43

  • Strana od-do

    24-66

  • Kód UT WoS článku

    000329619100002

  • EID výsledku v databázi Scopus