Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Computing Cartograms with Optimal Complexity

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F13%3A10190902" target="_blank" >RIV/00216208:11320/13:10190902 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://link.springer.com/article/10.1007%2Fs00454-013-9521-1" target="_blank" >http://link.springer.com/article/10.1007%2Fs00454-013-9521-1</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00454-013-9521-1" target="_blank" >10.1007/s00454-013-9521-1</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Computing Cartograms with Optimal Complexity

  • Popis výsledku v původním jazyce

    In a rectilinear dual of a planar graph vertices are represented by sim- ple rectilinear polygons, while edges are represented by side-contact between the corresponding polygons. A rectilinear dual is called a cartogram if the area of each region is equal to a pre-specified weight. The complexity of a cartogram is determined by the maximum number of corners (or sides) required for any polygon. In a series of papers the polygonal complexity of such representations for maximal planar graphs has been reduced from the initial 40 to 34, then to 12 and very recently to the currently best known 10. Here we describe a construction with 8-sided polygons, which is opti- mal in terms of polygonal complexity as 8-sided polygons are sometimes necessary.

  • Název v anglickém jazyce

    Computing Cartograms with Optimal Complexity

  • Popis výsledku anglicky

    In a rectilinear dual of a planar graph vertices are represented by sim- ple rectilinear polygons, while edges are represented by side-contact between the corresponding polygons. A rectilinear dual is called a cartogram if the area of each region is equal to a pre-specified weight. The complexity of a cartogram is determined by the maximum number of corners (or sides) required for any polygon. In a series of papers the polygonal complexity of such representations for maximal planar graphs has been reduced from the initial 40 to 34, then to 12 and very recently to the currently best known 10. Here we describe a construction with 8-sided polygons, which is opti- mal in terms of polygonal complexity as 8-sided polygons are sometimes necessary.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    IN - Informatika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GEGIG%2F11%2FE023" target="_blank" >GEGIG/11/E023: Kreslení grafů a jejich geometrické reprezentace</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2013

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Discrete and Computational Geometry

  • ISSN

    0179-5376

  • e-ISSN

  • Svazek periodika

    50

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    27

  • Strana od-do

    784-810

  • Kód UT WoS článku

    000324494500010

  • EID výsledku v databázi Scopus