Simplifying inclusion-exclusion formulas
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F13%3A10190922" target="_blank" >RIV/00216208:11320/13:10190922 - isvavai.cz</a>
Výsledek na webu
<a href="http://link.springer.com/chapter/10.1007/978-88-7642-475-5_88" target="_blank" >http://link.springer.com/chapter/10.1007/978-88-7642-475-5_88</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-88-7642-475-5_88" target="_blank" >10.1007/978-88-7642-475-5_88</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Simplifying inclusion-exclusion formulas
Popis výsledku v původním jazyce
Let F = (F 1, F 2, ..., F n) be a family of n sets on a ground set S, such as a family of balls in R d. For every finite measure ? on S, such that the sets of F are measurable, the classical inclusion-exclusion formula asserts that ? (F 1 UNION F 2 UNION...UNION F n) = N-ARY SUMMATIONI:oNOT EQUAL TOSUBSET OF OR EQUAL TO [n] (MINUS SIGN 1)|I|+1?(INTERSECTIONi ELEMENT OFIF i); that is, the measure of the union is expressed using measures of various intersections. The number of terms in this formula is exponential in n, and a significant amount of research, originating in applied areas, has been devoted to constructing simpler formulas for particular families F. We provide an upper bound valid for an arbitrary F: we show that every system F of n sets with m nonempty fields in the Venn diagram admits an inclusion-exclusion formula with m O (log2 n) terms and with +-1 coefficients, and that such a formula can be computed in m O (log2 n) expected time.
Název v anglickém jazyce
Simplifying inclusion-exclusion formulas
Popis výsledku anglicky
Let F = (F 1, F 2, ..., F n) be a family of n sets on a ground set S, such as a family of balls in R d. For every finite measure ? on S, such that the sets of F are measurable, the classical inclusion-exclusion formula asserts that ? (F 1 UNION F 2 UNION...UNION F n) = N-ARY SUMMATIONI:oNOT EQUAL TOSUBSET OF OR EQUAL TO [n] (MINUS SIGN 1)|I|+1?(INTERSECTIONi ELEMENT OFIF i); that is, the measure of the union is expressed using measures of various intersections. The number of terms in this formula is exponential in n, and a significant amount of research, originating in applied areas, has been devoted to constructing simpler formulas for particular families F. We provide an upper bound valid for an arbitrary F: we show that every system F of n sets with m nonempty fields in the Venn diagram admits an inclusion-exclusion formula with m O (log2 n) terms and with +-1 coefficients, and that such a formula can be computed in m O (log2 n) expected time.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GEGIG%2F11%2FE023" target="_blank" >GEGIG/11/E023: Kreslení grafů a jejich geometrické reprezentace</a><br>
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
The Seventh European Conference on Combinatorics, Graph Theory and Applications; EuroComb 2013
ISBN
978-88-7642-474-8
ISSN
—
e-ISSN
—
Počet stran výsledku
7
Strana od-do
559-565
Název nakladatele
Scuola Normale Superiore
Místo vydání
Pisa
Místo konání akce
Pisa
Datum konání akce
9. 9. 2013
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—