Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Simplifying Inclusion-Exclusion Formulas

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F15%3A10312208" target="_blank" >RIV/00216208:11320/15:10312208 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1017/S096354831400042X" target="_blank" >http://dx.doi.org/10.1017/S096354831400042X</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1017/S096354831400042X" target="_blank" >10.1017/S096354831400042X</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Simplifying Inclusion-Exclusion Formulas

  • Popis výsledku v původním jazyce

    Let F = {F-1, F-2, ..., F-n} be a family of n sets on a ground set S, such as a family of balls in R-d. For every finite measure mu on S, such that the sets of F are measurable, the classical inclusion-exclusion formula asserts that mu(F-1 boolean OR F-2boolean OR . . . boolean OR F-n) = Sigma(I:phi not equal I subset of[n]) (-1)(|I|+1)mu(boolean AND F-i is an element of I(i)), that is, the measure of the union is expressed using measures of various intersections. The number of terms in this formula isexponential in n, and a significant amount of research, originating in applied areas, has been devoted to constructing simpler formulas for particular families F. We provide an upper bound valid for an arbitrary F: we show that every system F of n setswith m non-empty fields in the Venn diagram admits an inclusion-exclusion formula with m(O(log2 n)) terms and with +/- 1 coefficients, and that such a formula can be computed in m(O(log2 n)) expected time. For every epsilon > 0 we also co

  • Název v anglickém jazyce

    Simplifying Inclusion-Exclusion Formulas

  • Popis výsledku anglicky

    Let F = {F-1, F-2, ..., F-n} be a family of n sets on a ground set S, such as a family of balls in R-d. For every finite measure mu on S, such that the sets of F are measurable, the classical inclusion-exclusion formula asserts that mu(F-1 boolean OR F-2boolean OR . . . boolean OR F-n) = Sigma(I:phi not equal I subset of[n]) (-1)(|I|+1)mu(boolean AND F-i is an element of I(i)), that is, the measure of the union is expressed using measures of various intersections. The number of terms in this formula isexponential in n, and a significant amount of research, originating in applied areas, has been devoted to constructing simpler formulas for particular families F. We provide an upper bound valid for an arbitrary F: we show that every system F of n setswith m non-empty fields in the Venn diagram admits an inclusion-exclusion formula with m(O(log2 n)) terms and with +/- 1 coefficients, and that such a formula can be computed in m(O(log2 n)) expected time. For every epsilon > 0 we also co

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GEGIG%2F11%2FE023" target="_blank" >GEGIG/11/E023: Kreslení grafů a jejich geometrické reprezentace</a><br>

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2015

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Combinatorics Probability and Computing

  • ISSN

    0963-5483

  • e-ISSN

  • Svazek periodika

    24

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    19

  • Strana od-do

    438-456

  • Kód UT WoS článku

    000348383500004

  • EID výsledku v databázi Scopus

    2-s2.0-84922021557