Simplifying Inclusion-Exclusion Formulas
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F15%3A10312208" target="_blank" >RIV/00216208:11320/15:10312208 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1017/S096354831400042X" target="_blank" >http://dx.doi.org/10.1017/S096354831400042X</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1017/S096354831400042X" target="_blank" >10.1017/S096354831400042X</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Simplifying Inclusion-Exclusion Formulas
Popis výsledku v původním jazyce
Let F = {F-1, F-2, ..., F-n} be a family of n sets on a ground set S, such as a family of balls in R-d. For every finite measure mu on S, such that the sets of F are measurable, the classical inclusion-exclusion formula asserts that mu(F-1 boolean OR F-2boolean OR . . . boolean OR F-n) = Sigma(I:phi not equal I subset of[n]) (-1)(|I|+1)mu(boolean AND F-i is an element of I(i)), that is, the measure of the union is expressed using measures of various intersections. The number of terms in this formula isexponential in n, and a significant amount of research, originating in applied areas, has been devoted to constructing simpler formulas for particular families F. We provide an upper bound valid for an arbitrary F: we show that every system F of n setswith m non-empty fields in the Venn diagram admits an inclusion-exclusion formula with m(O(log2 n)) terms and with +/- 1 coefficients, and that such a formula can be computed in m(O(log2 n)) expected time. For every epsilon > 0 we also co
Název v anglickém jazyce
Simplifying Inclusion-Exclusion Formulas
Popis výsledku anglicky
Let F = {F-1, F-2, ..., F-n} be a family of n sets on a ground set S, such as a family of balls in R-d. For every finite measure mu on S, such that the sets of F are measurable, the classical inclusion-exclusion formula asserts that mu(F-1 boolean OR F-2boolean OR . . . boolean OR F-n) = Sigma(I:phi not equal I subset of[n]) (-1)(|I|+1)mu(boolean AND F-i is an element of I(i)), that is, the measure of the union is expressed using measures of various intersections. The number of terms in this formula isexponential in n, and a significant amount of research, originating in applied areas, has been devoted to constructing simpler formulas for particular families F. We provide an upper bound valid for an arbitrary F: we show that every system F of n setswith m non-empty fields in the Venn diagram admits an inclusion-exclusion formula with m(O(log2 n)) terms and with +/- 1 coefficients, and that such a formula can be computed in m(O(log2 n)) expected time. For every epsilon > 0 we also co
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GEGIG%2F11%2FE023" target="_blank" >GEGIG/11/E023: Kreslení grafů a jejich geometrické reprezentace</a><br>
Návaznosti
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Combinatorics Probability and Computing
ISSN
0963-5483
e-ISSN
—
Svazek periodika
24
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
19
Strana od-do
438-456
Kód UT WoS článku
000348383500004
EID výsledku v databázi Scopus
2-s2.0-84922021557