On the complexity of computing a random Boolean function over the reals
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F20%3A00534404" target="_blank" >RIV/67985840:_____/20:00534404 - isvavai.cz</a>
Výsledek na webu
<a href="https://dx.doi.org/10.4086/toc.2020.v016a009" target="_blank" >https://dx.doi.org/10.4086/toc.2020.v016a009</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4086/toc.2020.v016a009" target="_blank" >10.4086/toc.2020.v016a009</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On the complexity of computing a random Boolean function over the reals
Popis výsledku v původním jazyce
We say that a first-order formula A(x1,…,xn) over R defines a Boolean function f:{0,1}n→{0,1}, if for every x1,…,xn∈{0,1}, A(x1,…,xn) is true iff f(x1,…,xn)=1. We show that: (i) every f can be defined by a formula of size O(n), (ii) if A is required to have at most k≥1 quantifier alternations, there exists an f which requires a formula of size 2Ω(n/k). The latter result implies several previously known as well as some new lower bounds in computational complexity: a non-constructive version of the lower bound on span programs of Babai, Gál, and Wigderson (Combinatorica 1999), Rothvoß's result (CoRR 2011) that there exist 0/1 polytopes that require exponential-size linear extended formulations, a similar lower bound by Briët et al. (Math. Program. 2015) on semidefinite extended formulations, and a new result stating that a random Boolean function has exponential linear separation complexity. We note that (i) holds over any field of characteristic zero, and (ii) holds over any real closed or algebraically closed field.
Název v anglickém jazyce
On the complexity of computing a random Boolean function over the reals
Popis výsledku anglicky
We say that a first-order formula A(x1,…,xn) over R defines a Boolean function f:{0,1}n→{0,1}, if for every x1,…,xn∈{0,1}, A(x1,…,xn) is true iff f(x1,…,xn)=1. We show that: (i) every f can be defined by a formula of size O(n), (ii) if A is required to have at most k≥1 quantifier alternations, there exists an f which requires a formula of size 2Ω(n/k). The latter result implies several previously known as well as some new lower bounds in computational complexity: a non-constructive version of the lower bound on span programs of Babai, Gál, and Wigderson (Combinatorica 1999), Rothvoß's result (CoRR 2011) that there exist 0/1 polytopes that require exponential-size linear extended formulations, a similar lower bound by Briët et al. (Math. Program. 2015) on semidefinite extended formulations, and a new result stating that a random Boolean function has exponential linear separation complexity. We note that (i) holds over any field of characteristic zero, and (ii) holds over any real closed or algebraically closed field.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-05497S" target="_blank" >GA19-05497S: Složitost matematických důkazů a struktur</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Theory of Computing
ISSN
1557-2862
e-ISSN
—
Svazek periodika
16
Číslo periodika v rámci svazku
October
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
12
Strana od-do
9
Kód UT WoS článku
000585121500001
EID výsledku v databázi Scopus
2-s2.0-85100104829