On ϵ-sensitive monotone computations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F20%3A00531552" target="_blank" >RIV/67985840:_____/20:00531552 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/s00037-020-00196-6" target="_blank" >https://doi.org/10.1007/s00037-020-00196-6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00037-020-00196-6" target="_blank" >10.1007/s00037-020-00196-6</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On ϵ-sensitive monotone computations
Popis výsledku v původním jazyce
We show that strong-enough lower bounds on monotone arithmetic circuits or the nonnegative rank of a matrix imply unconditional lower bounds in arithmetic or Boolean circuit complexity. First, we show that if a polynomial f∈ R[x1, ⋯ , xn] of degree d has an arithmetic circuit of size s then (x1+⋯+xn+1)d+ϵf has a monotone arithmetic circuit of size O(sd2+ nlog n) , for some ϵ> 0. Second, if f: { 0 , 1 } n→ { 0 , 1 } is a Boolean function, we associate with f an explicit exponential-size matrix M(f) such that the Boolean circuit size of f is at least Ω(min ϵ>(rk +(M(f) - ϵJ)) - 2 n) , where J is the all-ones matrix and rk + denotes the nonnegative rank of a matrix. In fact, the quantity min ϵ>(rk +(M(f) - ϵJ)) characterizes how hard is it to distinguish rejecting and accepting inputs of f by means of a linear program. Finally, we introduce a proof system resembling the monotone calculus of Atserias et al. (J Comput Syst Sci 65:626–638, 2002) and show that similar ϵ-sensitive lower bounds on monotone arithmetic circuits imply lower bounds on proof-size in the system.
Název v anglickém jazyce
On ϵ-sensitive monotone computations
Popis výsledku anglicky
We show that strong-enough lower bounds on monotone arithmetic circuits or the nonnegative rank of a matrix imply unconditional lower bounds in arithmetic or Boolean circuit complexity. First, we show that if a polynomial f∈ R[x1, ⋯ , xn] of degree d has an arithmetic circuit of size s then (x1+⋯+xn+1)d+ϵf has a monotone arithmetic circuit of size O(sd2+ nlog n) , for some ϵ> 0. Second, if f: { 0 , 1 } n→ { 0 , 1 } is a Boolean function, we associate with f an explicit exponential-size matrix M(f) such that the Boolean circuit size of f is at least Ω(min ϵ>(rk +(M(f) - ϵJ)) - 2 n) , where J is the all-ones matrix and rk + denotes the nonnegative rank of a matrix. In fact, the quantity min ϵ>(rk +(M(f) - ϵJ)) characterizes how hard is it to distinguish rejecting and accepting inputs of f by means of a linear program. Finally, we introduce a proof system resembling the monotone calculus of Atserias et al. (J Comput Syst Sci 65:626–638, 2002) and show that similar ϵ-sensitive lower bounds on monotone arithmetic circuits imply lower bounds on proof-size in the system.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GX19-27871X" target="_blank" >GX19-27871X: Efektivní aproximační algoritmy a obvodová složitost</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computational Complexity
ISSN
1016-3328
e-ISSN
—
Svazek periodika
29
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
38
Strana od-do
6
Kód UT WoS článku
000552200600001
EID výsledku v databázi Scopus
2-s2.0-85088507263