The canonical pairs of bounded depth Frege systems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F21%3A00535773" target="_blank" >RIV/67985840:_____/21:00535773 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.apal.2020.102892" target="_blank" >https://doi.org/10.1016/j.apal.2020.102892</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.apal.2020.102892" target="_blank" >10.1016/j.apal.2020.102892</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The canonical pairs of bounded depth Frege systems
Popis výsledku v původním jazyce
The canonical pair of a proof system P is the pair of disjoint NP sets where one set is the set of all satisfiable CNF formulas and the other is the set of CNF formulas that have P-proofs bounded by some polynomial. We give a combinatorial characterization of the canonical pairs of depth d Frege systems. Our characterization is based on certain games, introduced in this article, that are parametrized by a number k, also called the depth. We show that the canonical pair of a depth d Frege system is polynomially equivalent to the pair (Ad+2,Bd+2) where Ad+2 (respectively, Bd+1) are depth d+1 games in which Player I (Player II) has a positional winning strategy. Although this characterization is stated in terms of games, we will show that these combinatorial structures can be viewed as generalizations of monotone Boolean circuits. In particular, depth 1 games are essentially monotone Boolean circuits. Thus we get a generalization of the monotone feasible interpolation for Resolution, which is a property that enables one to reduce the task of proving lower bounds on the size of refutations to lower bounds on the size of monotone Boolean circuits. However, we do not have a method yet for proving lower bounds on the size of depth d games for d>1.
Název v anglickém jazyce
The canonical pairs of bounded depth Frege systems
Popis výsledku anglicky
The canonical pair of a proof system P is the pair of disjoint NP sets where one set is the set of all satisfiable CNF formulas and the other is the set of CNF formulas that have P-proofs bounded by some polynomial. We give a combinatorial characterization of the canonical pairs of depth d Frege systems. Our characterization is based on certain games, introduced in this article, that are parametrized by a number k, also called the depth. We show that the canonical pair of a depth d Frege system is polynomially equivalent to the pair (Ad+2,Bd+2) where Ad+2 (respectively, Bd+1) are depth d+1 games in which Player I (Player II) has a positional winning strategy. Although this characterization is stated in terms of games, we will show that these combinatorial structures can be viewed as generalizations of monotone Boolean circuits. In particular, depth 1 games are essentially monotone Boolean circuits. Thus we get a generalization of the monotone feasible interpolation for Resolution, which is a property that enables one to reduce the task of proving lower bounds on the size of refutations to lower bounds on the size of monotone Boolean circuits. However, we do not have a method yet for proving lower bounds on the size of depth d games for d>1.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GX19-27871X" target="_blank" >GX19-27871X: Efektivní aproximační algoritmy a obvodová složitost</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Annals of Pure and Applied Logic
ISSN
0168-0072
e-ISSN
1873-2461
Svazek periodika
172
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
41
Strana od-do
102892
Kód UT WoS článku
000594715500007
EID výsledku v databázi Scopus
2-s2.0-85092113495