On proof complexity of resolution over polynomial calculus
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F22%3A00559957" target="_blank" >RIV/67985840:_____/22:00559957 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11320/22:10456573
Výsledek na webu
<a href="https://doi.org/10.1145/3506702" target="_blank" >https://doi.org/10.1145/3506702</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3506702" target="_blank" >10.1145/3506702</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On proof complexity of resolution over polynomial calculus
Popis výsledku v původním jazyce
The proof system Res (PCd,R) is a natural extension of the Resolution proof system that instead of disjunctions of literals operates with disjunctions of degree d multivariate polynomials over a ring R with Boolean variables. Proving super-polynomial lower bounds for the size of Res(PC1,R)-refutations of Conjunctive normal forms (CNFs) is one of the important problems in propositional proof complexity. The existence of such lower bounds is even open for Res(PC1,) when is a finite field, such as 2. In this article, we investigate Res(PCd,R) and tree-like Res(PCd,R) and prove size-width relations for them when R is a finite ring. As an application, we prove new lower bounds and reprove some known lower bounds for every finite field as follows:(1)We prove almost quadratic lower bounds for Res(PCd,)-refutations for every fixed d. The new lower bounds are for the following CNFs:(a)Mod q Tseitin formulas (char() q) and Flow formulas,(b)Random k-CNFs with linearly many clauses.(2)We also prove super-polynomial (more than nk for any fixed k) and also exponential (2nμ for an μ > 0) lower bounds for tree-like Res(PCd,)-refutations based on how big d is with respect to n for the following CNFs:(a)Mod q Tseitin formulas (char()q) and Flow formulas,(b)Random k-CNFs of suitable densities,(c)Pigeonhole principle and Counting mod q principle. The lower bounds for the dag-like systems are the first nontrivial lower bounds for these systems, including the case d=1. The lower bounds for the tree-like systems were known for the case d=1 (except for the Counting mod q principle, in which lower bounds for the case d> 1 were known too). Our lower bounds extend those results to the case where d> 1 and also give new proofs for the case d=1.
Název v anglickém jazyce
On proof complexity of resolution over polynomial calculus
Popis výsledku anglicky
The proof system Res (PCd,R) is a natural extension of the Resolution proof system that instead of disjunctions of literals operates with disjunctions of degree d multivariate polynomials over a ring R with Boolean variables. Proving super-polynomial lower bounds for the size of Res(PC1,R)-refutations of Conjunctive normal forms (CNFs) is one of the important problems in propositional proof complexity. The existence of such lower bounds is even open for Res(PC1,) when is a finite field, such as 2. In this article, we investigate Res(PCd,R) and tree-like Res(PCd,R) and prove size-width relations for them when R is a finite ring. As an application, we prove new lower bounds and reprove some known lower bounds for every finite field as follows:(1)We prove almost quadratic lower bounds for Res(PCd,)-refutations for every fixed d. The new lower bounds are for the following CNFs:(a)Mod q Tseitin formulas (char() q) and Flow formulas,(b)Random k-CNFs with linearly many clauses.(2)We also prove super-polynomial (more than nk for any fixed k) and also exponential (2nμ for an μ > 0) lower bounds for tree-like Res(PCd,)-refutations based on how big d is with respect to n for the following CNFs:(a)Mod q Tseitin formulas (char()q) and Flow formulas,(b)Random k-CNFs of suitable densities,(c)Pigeonhole principle and Counting mod q principle. The lower bounds for the dag-like systems are the first nontrivial lower bounds for these systems, including the case d=1. The lower bounds for the tree-like systems were known for the case d=1 (except for the Counting mod q principle, in which lower bounds for the case d> 1 were known too). Our lower bounds extend those results to the case where d> 1 and also give new proofs for the case d=1.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GX19-27871X" target="_blank" >GX19-27871X: Efektivní aproximační algoritmy a obvodová složitost</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ACM Transactions on Computational Logic
ISSN
1529-3785
e-ISSN
1557-945X
Svazek periodika
23
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
24
Strana od-do
16
Kód UT WoS článku
000831583400003
EID výsledku v databázi Scopus
2-s2.0-85135020022