Optimal composition theorem for randomized query complexity
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F23%3A00581950" target="_blank" >RIV/67985840:_____/23:00581950 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.4086/toc.2021.v017a008" target="_blank" >http://dx.doi.org/10.4086/toc.2021.v017a008</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4086/toc.2023.v019.a009" target="_blank" >10.4086/toc.2023.v019.a009</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Optimal composition theorem for randomized query complexity
Popis výsledku v původním jazyce
For any set S, any relation F subset of {0, 1}(n) x S and any partial Boolean function, defined on a subset of {0, 1}(m), we show that R-1/3 (f o g(n)) is an element of Omega (R-4/9(f) center dot root R-1/3(g)), where R-epsilon(center dot) stands for the bounded-error randomized query complexity with error at most epsilon, and f o g(n) subset of ({0, 1}(m))(n) x S denotes the composition of 5 with = instances of g. This result is new even in the special case when S = {0, 1} and g is a total function. We show that the new composition theorem is optimal for the general case of relations: A relation f(0) and a partial Boolean function g(0) are constructed, such that R-4/9 (f(0)) is an element of Theta(root n), R-1/3(g(0)) is an element of Theta (n) and R-1/3(f(0) o g(0)(n)) is an element of Theta (n).nThe theorem is proved via introducing a new complexity measure, max-conflict complexity, denoted by chi(center dot). Its investigation shows that (chi) over bar (g) is an element of Omega(R-1/3(g)) for any partial Boolean function g and (R-1/3(f o g(n)) is an element of Omega(R-4/9(f) center dot (chi) over bar (g)) for any relation f, which readily implies the composition statement. It is further shown that (chi) over bar (g) is always at least as large as the sabotage complexity of g (introduced by Ben-David and Kothari in 2016).
Název v anglickém jazyce
Optimal composition theorem for randomized query complexity
Popis výsledku anglicky
For any set S, any relation F subset of {0, 1}(n) x S and any partial Boolean function, defined on a subset of {0, 1}(m), we show that R-1/3 (f o g(n)) is an element of Omega (R-4/9(f) center dot root R-1/3(g)), where R-epsilon(center dot) stands for the bounded-error randomized query complexity with error at most epsilon, and f o g(n) subset of ({0, 1}(m))(n) x S denotes the composition of 5 with = instances of g. This result is new even in the special case when S = {0, 1} and g is a total function. We show that the new composition theorem is optimal for the general case of relations: A relation f(0) and a partial Boolean function g(0) are constructed, such that R-4/9 (f(0)) is an element of Theta(root n), R-1/3(g(0)) is an element of Theta (n) and R-1/3(f(0) o g(0)(n)) is an element of Theta (n).nThe theorem is proved via introducing a new complexity measure, max-conflict complexity, denoted by chi(center dot). Its investigation shows that (chi) over bar (g) is an element of Omega(R-1/3(g)) for any partial Boolean function g and (R-1/3(f o g(n)) is an element of Omega(R-4/9(f) center dot (chi) over bar (g)) for any relation f, which readily implies the composition statement. It is further shown that (chi) over bar (g) is always at least as large as the sabotage complexity of g (introduced by Ben-David and Kothari in 2016).
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GX19-27871X" target="_blank" >GX19-27871X: Efektivní aproximační algoritmy a obvodová složitost</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Theory of Computing
ISSN
1557-2862
e-ISSN
1557-2862
Svazek periodika
19
Číslo periodika v rámci svazku
December
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
35
Strana od-do
9
Kód UT WoS článku
001137473500001
EID výsledku v databázi Scopus
—