Selecting relevant information for medical decision support with application in cardiology
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F13%3A10194313" target="_blank" >RIV/00216208:11320/13:10194313 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/67985807:_____/13:00395155 RIV/00216208:11110/13:10194313
Výsledek na webu
<a href="http://www.ejbi.org/img/ejbi/2013/1/Kalina_en.pdf" target="_blank" >http://www.ejbi.org/img/ejbi/2013/1/Kalina_en.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Selecting relevant information for medical decision support with application in cardiology
Popis výsledku v původním jazyce
Objectives: The aim of our work was to implement a prototype of a decision support system which has the form of a web-based classification service. Because the data analysis component of decision support systems often happens to be unsuitable for high-dimensional data, special attention must be paid to the sophisticated selection of the most relevant variables before learning the classification rule. Methods: We implemented a prototype of a diagnostic decision support system called SIR. The system has the ability to select the most relevant variables based on a set of high-dimensional measurements by means of a forward procedure optimizing a decision-making criterion. This allows to learn a reliable classification rule. Results: The implemented prototype was tested on a sample of patients involved in a cardiology study. We used SIR to perform an information extraction from a cardiological clinical study containing both clinical and gene expression data. The classification performance w
Název v anglickém jazyce
Selecting relevant information for medical decision support with application in cardiology
Popis výsledku anglicky
Objectives: The aim of our work was to implement a prototype of a decision support system which has the form of a web-based classification service. Because the data analysis component of decision support systems often happens to be unsuitable for high-dimensional data, special attention must be paid to the sophisticated selection of the most relevant variables before learning the classification rule. Methods: We implemented a prototype of a diagnostic decision support system called SIR. The system has the ability to select the most relevant variables based on a set of high-dimensional measurements by means of a forward procedure optimizing a decision-making criterion. This allows to learn a reliable classification rule. Results: The implemented prototype was tested on a sample of patients involved in a cardiology study. We used SIR to perform an information extraction from a cardiological clinical study containing both clinical and gene expression data. The classification performance w
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/1M06014" target="_blank" >1M06014: Centrum biomedicínské informatiky (CBI)</a><br>
Návaznosti
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Europaen Journal of Biomedical Informatics
ISSN
1801-5603
e-ISSN
—
Svazek periodika
9
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
5
Strana od-do
2-6
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—