Provenance Policies for Subjective Filtering of the Aggregated Linked Data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F13%3A10195431" target="_blank" >RIV/00216208:11320/13:10195431 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Provenance Policies for Subjective Filtering of the Aggregated Linked Data
Popis výsledku v původním jazyce
As part of LOD2.eu project and OpenData.cz initiative, we are developing an ODCleanStore framework (1) enabling management of governmental linked data and (2) providing web applications with a possibility to consume cleaned and integrated governmental linked data; the provided data is accompanied with data provenance and a quality score based on a set of policies designed by the governmental domain experts. Nevertheless, these (objective) policies fail to express subjective quality of the data as perceived by various data consumers and different situations at their hand. In this paper, we describe how consumers can define their own situation-specific policies based on the idea of filtering certain data sources due to certain aspects in the data provenance records associated with these sources. In particular, we describe how these policies can be (1) constructed by data consumers and (2) applied as part of the data consumption process in ODCleanStore. We are persuaded that provenance po
Název v anglickém jazyce
Provenance Policies for Subjective Filtering of the Aggregated Linked Data
Popis výsledku anglicky
As part of LOD2.eu project and OpenData.cz initiative, we are developing an ODCleanStore framework (1) enabling management of governmental linked data and (2) providing web applications with a possibility to consume cleaned and integrated governmental linked data; the provided data is accompanied with data provenance and a quality score based on a set of policies designed by the governmental domain experts. Nevertheless, these (objective) policies fail to express subjective quality of the data as perceived by various data consumers and different situations at their hand. In this paper, we describe how consumers can define their own situation-specific policies based on the idea of filtering certain data sources due to certain aspects in the data provenance records associated with these sources. In particular, we describe how these policies can be (1) constructed by data consumers and (2) applied as part of the data consumption process in ODCleanStore. We are persuaded that provenance po
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 5th International Conference on Advances in Databases, Knowledge, and Data Applications
ISBN
978-1-61208-247-9
ISSN
2308-4332
e-ISSN
—
Počet stran výsledku
5
Strana od-do
95-99
Název nakladatele
IARIA
Místo vydání
Spain
Místo konání akce
Sevilla, Spain
Datum konání akce
27. 1. 2013
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—