Firefighting on square, hexagonal, and triangular grids
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F14%3A10282423" target="_blank" >RIV/00216208:11320/14:10282423 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.disc.2014.06.020" target="_blank" >http://dx.doi.org/10.1016/j.disc.2014.06.020</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.disc.2014.06.020" target="_blank" >10.1016/j.disc.2014.06.020</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Firefighting on square, hexagonal, and triangular grids
Popis výsledku v původním jazyce
In this paper, we consider the firefighter problem on a graph G = (V, E) that is either finite or infinite. Suppose that a fire breaks out at a given vertex v is an element of V. In each subsequent time unit, a firefighter protects one vertex which is not yet on fire, and then the fire spreads to all unprotected neighbors of the vertices on fire. The objective of the firefighter is to save as many vertices as possible (if G is finite) or to stop the fire from spreading (for an infinite case). The surviving rate rho(G) of a finite graph G is defined as the expected percentage of vertices that can be saved when a fire breaks out at a vertex of G that is selected uniformly random. For a finite square grid P-n square P-n, we show that 5/8 + 0(1) {= rho(P-nsquare P-n) {= 67 243/105 300 + 0(1) (leaving the gap smaller than 0.0136) and conjecture that the surviving rate is asymptotic to 5/8. We define the surviving rate for infinite graphs and prove it to be 1/4 for the infinite square grid,
Název v anglickém jazyce
Firefighting on square, hexagonal, and triangular grids
Popis výsledku anglicky
In this paper, we consider the firefighter problem on a graph G = (V, E) that is either finite or infinite. Suppose that a fire breaks out at a given vertex v is an element of V. In each subsequent time unit, a firefighter protects one vertex which is not yet on fire, and then the fire spreads to all unprotected neighbors of the vertices on fire. The objective of the firefighter is to save as many vertices as possible (if G is finite) or to stop the fire from spreading (for an infinite case). The surviving rate rho(G) of a finite graph G is defined as the expected percentage of vertices that can be saved when a fire breaks out at a vertex of G that is selected uniformly random. For a finite square grid P-n square P-n, we show that 5/8 + 0(1) {= rho(P-nsquare P-n) {= 67 243/105 300 + 0(1) (leaving the gap smaller than 0.0136) and conjecture that the surviving rate is asymptotic to 5/8. We define the surviving rate for infinite graphs and prove it to be 1/4 for the infinite square grid,
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Centrum excelence - Institut teoretické informatiky (CE-ITI)</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Discrete Mathematics
ISSN
0012-365X
e-ISSN
—
Svazek periodika
337
Číslo periodika v rámci svazku
December
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
14
Strana od-do
142-155
Kód UT WoS článku
000343843300013
EID výsledku v databázi Scopus
—