Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Locally injective k-colourings of planar graphs

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F14%3A10282425" target="_blank" >RIV/00216208:11320/14:10282425 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1016/j.dam.2014.03.020" target="_blank" >http://dx.doi.org/10.1016/j.dam.2014.03.020</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.dam.2014.03.020" target="_blank" >10.1016/j.dam.2014.03.020</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Locally injective k-colourings of planar graphs

  • Popis výsledku v původním jazyce

    A colouring of the vertices of a graph is called injective if every two distinct vertices connected by a path of length 2 receive different colours, and it is called locally injective if it is an injective proper colouring. We show that for k }= 4, deciding the existence of a locally injective k-colouring, and of an injective k-colouring, are NP-complete problems even when restricted to planar graphs. It is known that every planar graph of maximum degree {= 3/5k - 52 allows a locally injective k-colouring. To compare the behaviour of planar and general graphs we show that for general graphs, deciding the existence of a locally injective k-colouring becomes NP-complete for graphs of maximum degree 2 root k (when k }= 7).

  • Název v anglickém jazyce

    Locally injective k-colourings of planar graphs

  • Popis výsledku anglicky

    A colouring of the vertices of a graph is called injective if every two distinct vertices connected by a path of length 2 receive different colours, and it is called locally injective if it is an injective proper colouring. We show that for k }= 4, deciding the existence of a locally injective k-colouring, and of an injective k-colouring, are NP-complete problems even when restricted to planar graphs. It is known that every planar graph of maximum degree {= 3/5k - 52 allows a locally injective k-colouring. To compare the behaviour of planar and general graphs we show that for general graphs, deciding the existence of a locally injective k-colouring becomes NP-complete for graphs of maximum degree 2 root k (when k }= 7).

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    IN - Informatika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Centrum excelence - Institut teoretické informatiky (CE-ITI)</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2014

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Discrete Applied Mathematics

  • ISSN

    0166-218X

  • e-ISSN

  • Svazek periodika

    173

  • Číslo periodika v rámci svazku

    August

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    9

  • Strana od-do

    53-61

  • Kód UT WoS článku

    000337204100007

  • EID výsledku v databázi Scopus