On Minimum Representations of Matched Formulas
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F14%3A10285651" target="_blank" >RIV/00216208:11320/14:10285651 - isvavai.cz</a>
Výsledek na webu
<a href="http://jair.org/media/4517/live-4517-8363-jair.pdf" target="_blank" >http://jair.org/media/4517/live-4517-8363-jair.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1613/jair.4517" target="_blank" >10.1613/jair.4517</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On Minimum Representations of Matched Formulas
Popis výsledku v původním jazyce
A Boolean formula in conjunctive normal form (CNF) is called matched if the system of sets of variables which appear in individual clauses has a system of distinct representatives. Each matched CNF is trivially satisfiable (each clause can be satisfied by its representative variable). Another property which is easy to see, is that the class of matched CNFs is not closed under partial assignment of truth values to variables. This latter property leads to a fact (proved here) that given two matched CNFs it is co-NP complete to decide whether they are logically equivalent. The construction in this proof leads to another result: a much shorter and simpler proof of the fact that the Boolean minimization problem for matched CNFs is a complete problem for thesecond level of the polynomial hierarchy. The main result of this paper deals with the structure of clause minimum CNFs. We prove here that if a Boolean function f admits a representation by a matched CNF then every clause minimum CNF re
Název v anglickém jazyce
On Minimum Representations of Matched Formulas
Popis výsledku anglicky
A Boolean formula in conjunctive normal form (CNF) is called matched if the system of sets of variables which appear in individual clauses has a system of distinct representatives. Each matched CNF is trivially satisfiable (each clause can be satisfied by its representative variable). Another property which is easy to see, is that the class of matched CNFs is not closed under partial assignment of truth values to variables. This latter property leads to a fact (proved here) that given two matched CNFs it is co-NP complete to decide whether they are logically equivalent. The construction in this proof leads to another result: a much shorter and simpler proof of the fact that the Boolean minimization problem for matched CNFs is a complete problem for thesecond level of the polynomial hierarchy. The main result of this paper deals with the structure of clause minimum CNFs. We prove here that if a Boolean function f admits a representation by a matched CNF then every clause minimum CNF re
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Artificial Intelligence Research
ISSN
1076-9757
e-ISSN
—
Svazek periodika
51
Číslo periodika v rámci svazku
12/2014
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
17
Strana od-do
707-723
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—