Strong Duality in Horn Minimization
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10371729" target="_blank" >RIV/00216208:11320/17:10371729 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-662-55751-8_11" target="_blank" >http://dx.doi.org/10.1007/978-3-662-55751-8_11</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-662-55751-8_11" target="_blank" >10.1007/978-3-662-55751-8_11</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Strong Duality in Horn Minimization
Popis výsledku v původním jazyce
A pure Horn CNF is minimal if no shorter pure Horn CNF representing the same function exists, where the CNF length may mean several different things, e.g. the number of clauses, or the total number of literals (sum of clause lengths), or the number of distinct bodies (source sets). The corresponding minimization problems (a different problem for each measure of the CNF size) appear not only in the Boolean context, but also as problems on directed hypergraphs or problems on closure systems. While minimizing the number of clauses or the total number of literals is computationally very hard, minimizing the number of distinct bodies is polynomial time solvable. There are several algorithms in the literature solving this task. In this paper we provide a structural result for this body minimization problem. We develop a lower bound for the number of bodies in any CNF representing the same Boolean function as the input CNF, and then prove a strong duality result showing that such a lower bound is always tight. This in turn gives a simple sufficient condition for body minimality of a pure Horn CNF, yielding a conceptually simpler minimization algorithm compared to the existing ones, which matches the time complexity of the fastest currently known algorithm.
Název v anglickém jazyce
Strong Duality in Horn Minimization
Popis výsledku anglicky
A pure Horn CNF is minimal if no shorter pure Horn CNF representing the same function exists, where the CNF length may mean several different things, e.g. the number of clauses, or the total number of literals (sum of clause lengths), or the number of distinct bodies (source sets). The corresponding minimization problems (a different problem for each measure of the CNF size) appear not only in the Boolean context, but also as problems on directed hypergraphs or problems on closure systems. While minimizing the number of clauses or the total number of literals is computationally very hard, minimizing the number of distinct bodies is polynomial time solvable. There are several algorithms in the literature solving this task. In this paper we provide a structural result for this body minimization problem. We develop a lower bound for the number of bodies in any CNF representing the same Boolean function as the input CNF, and then prove a strong duality result showing that such a lower bound is always tight. This in turn gives a simple sufficient condition for body minimality of a pure Horn CNF, yielding a conceptually simpler minimization algorithm compared to the existing ones, which matches the time complexity of the fastest currently known algorithm.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA15-15511S" target="_blank" >GA15-15511S: Booleovské techniky v reprezentaci znalostí</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Fundamentals of Computation Theory, 21st International Symposium, FCT 2017
ISBN
978-3-662-55750-1
ISSN
0302-9743
e-ISSN
neuvedeno
Počet stran výsledku
13
Strana od-do
123-135
Název nakladatele
Springer-Verlag
Místo vydání
Berlin
Místo konání akce
Bordeaux, France
Datum konání akce
11. 9. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—