Detecting Disengagement of Online Students through Log Files Analysis
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F14%3A10287120" target="_blank" >RIV/00216208:11320/14:10287120 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11140/14:10287120
Výsledek na webu
<a href="http://conference.pixel-online.net/FOE/prevedition.php?id_edition=6&mat=CPR" target="_blank" >http://conference.pixel-online.net/FOE/prevedition.php?id_edition=6&mat=CPR</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Detecting Disengagement of Online Students through Log Files Analysis
Popis výsledku v původním jazyce
To achieve effective learning, motivational aspects like engagement play a very important role. Within online learning applications the disengagement detection and prediction based on real data (not always in real time) is becoming more and more popularamong educational specialists. Many Elearning systems, and virtual or remote learning environments, could be improved by tracking students' disengagement that, in turn, would allow personalized interventions at appropriate times in order to re-engage students. The present article describes the results of a medium-scale (N = 56) study, using log files from Open Remote Laboratory at Charles University in Prague, Faculty of Mathematics and Physics, to observe secondary school students' behaviour during their work in virtual environment. Simple data mining and text mining techniques were used to reveal individual user's behavioural patterns and to detect disengagement. The results will be used mainly to improve the systems' adaptability to
Název v anglickém jazyce
Detecting Disengagement of Online Students through Log Files Analysis
Popis výsledku anglicky
To achieve effective learning, motivational aspects like engagement play a very important role. Within online learning applications the disengagement detection and prediction based on real data (not always in real time) is becoming more and more popularamong educational specialists. Many Elearning systems, and virtual or remote learning environments, could be improved by tracking students' disengagement that, in turn, would allow personalized interventions at appropriate times in order to re-engage students. The present article describes the results of a medium-scale (N = 56) study, using log files from Open Remote Laboratory at Charles University in Prague, Faculty of Mathematics and Physics, to observe secondary school students' behaviour during their work in virtual environment. Simple data mining and text mining techniques were used to reveal individual user's behavioural patterns and to detect disengagement. The results will be used mainly to improve the systems' adaptability to
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
AM - Pedagogika a školství
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
International conference The future of Education Edition 4
ISBN
978-88-6292-499-3
ISSN
—
e-ISSN
—
Počet stran výsledku
4
Strana od-do
137-141
Název nakladatele
Libreriauniversitaria.it
Místo vydání
Florence, Italy
Místo konání akce
Florence Italy
Datum konání akce
12. 6. 2014
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—