Intensity estimation for inhomogeneous Gibbs point process with covariates-dependent chemical activity
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F14%3A10287201" target="_blank" >RIV/00216208:11320/14:10287201 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1111/stan.12030" target="_blank" >http://dx.doi.org/10.1111/stan.12030</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1111/stan.12030" target="_blank" >10.1111/stan.12030</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Intensity estimation for inhomogeneous Gibbs point process with covariates-dependent chemical activity
Popis výsledku v původním jazyce
Recent development of intensity estimation for inhomogeneous spatial point processes with covariates suggests that kerneling in the covariate space is a competitive intensity estimation method for inhomogeneous Poisson processes. It is not known whetherthis advantageous performance is still valid when the points interact. In the simplest common case, this happens, for example, when the objects presented as points have a spatial dimension. In this paper, kerneling in the covariate space is extended to Gibbs processes with covariates-dependent chemical activity and inhibitive interactions, and the performance of the approach is studied through extensive simulation experiments. It is demonstrated that under mild assumptions on the dependence of the intensity on covariates, this approach can provide better results than the classical nonparametric method based on local smoothing in the spatial domain. In comparison with the parametric pseudo-likelihood estimation, the nonparametric approac
Název v anglickém jazyce
Intensity estimation for inhomogeneous Gibbs point process with covariates-dependent chemical activity
Popis výsledku anglicky
Recent development of intensity estimation for inhomogeneous spatial point processes with covariates suggests that kerneling in the covariate space is a competitive intensity estimation method for inhomogeneous Poisson processes. It is not known whetherthis advantageous performance is still valid when the points interact. In the simplest common case, this happens, for example, when the objects presented as points have a spatial dimension. In this paper, kerneling in the covariate space is extended to Gibbs processes with covariates-dependent chemical activity and inhibitive interactions, and the performance of the approach is studied through extensive simulation experiments. It is demonstrated that under mild assumptions on the dependence of the intensity on covariates, this approach can provide better results than the classical nonparametric method based on local smoothing in the spatial domain. In comparison with the parametric pseudo-likelihood estimation, the nonparametric approac
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GAP201%2F10%2F0472" target="_blank" >GAP201/10/0472: Stochastická geometrie - nehomogenita, kótování, dynamika a stereologie</a><br>
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Statistica Neerlandica
ISSN
0039-0402
e-ISSN
—
Svazek periodika
68
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
25
Strana od-do
225-249
Kód UT WoS článku
000340585200004
EID výsledku v databázi Scopus
—