Low-rank matrix approximations for Coherent point drift
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F15%3A10281328" target="_blank" >RIV/00216208:11320/15:10281328 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11310/15:10281328
Výsledek na webu
<a href="http://www.sciencedirect.com/science/article/pii/S0167865514003122" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0167865514003122</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.patrec.2014.10.005" target="_blank" >10.1016/j.patrec.2014.10.005</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Low-rank matrix approximations for Coherent point drift
Popis výsledku v původním jazyce
Coherent point drift (CPD) is a powerful non-rigid point cloud registration algorithm. A speed-up technique that allows it to operate on large sets in reasonable time, however depends on efficient low-rank decomposition of a large affinity matrix. The originally used algorithm for finding eigenvectors in this case is based on Arnoldi's iteration which, though very precise, requires the calculation of numerous large matrix-vector products, which even with further speed-up techniques is computationally intensive. We use a different method of finding that approximation, based on Nyström sampling and design a modification that significantly accelerates the preprocessing stage of CPD. We test our modifications on a variety of situations, including differentpoint counts, added Gaussian noise, outliers and deformation of the registered clouds. The results indicate that using our proposed approximation technique the desirable qualities of CPD such as robustness and precision are only minimall
Název v anglickém jazyce
Low-rank matrix approximations for Coherent point drift
Popis výsledku anglicky
Coherent point drift (CPD) is a powerful non-rigid point cloud registration algorithm. A speed-up technique that allows it to operate on large sets in reasonable time, however depends on efficient low-rank decomposition of a large affinity matrix. The originally used algorithm for finding eigenvectors in this case is based on Arnoldi's iteration which, though very precise, requires the calculation of numerous large matrix-vector products, which even with further speed-up techniques is computationally intensive. We use a different method of finding that approximation, based on Nyström sampling and design a modification that significantly accelerates the preprocessing stage of CPD. We test our modifications on a variety of situations, including differentpoint counts, added Gaussian noise, outliers and deformation of the registered clouds. The results indicate that using our proposed approximation technique the desirable qualities of CPD such as robustness and precision are only minimall
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Pattern Recognition Letters
ISSN
0167-8655
e-ISSN
—
Svazek periodika
2014
Číslo periodika v rámci svazku
52
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
6
Strana od-do
53-58
Kód UT WoS článku
000345697400008
EID výsledku v databázi Scopus
2-s2.0-84909957934