Augmented Postprocessing of the FTLS Vectorization Algorithm
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F16%3APU119785" target="_blank" >RIV/00216305:26220/16:PU119785 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.5220/0005962902160223" target="_blank" >http://dx.doi.org/10.5220/0005962902160223</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5220/0005962902160223" target="_blank" >10.5220/0005962902160223</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Augmented Postprocessing of the FTLS Vectorization Algorithm
Popis výsledku v původním jazyce
Vectorization is a widely used technique in many areas, mainly in robotics and image processing. Applications in these domains frequently require both speed (for real-time operation) and accuracy (for maximal information gain). This paper proposes an optimization for the high speed vectorization methods, which leads to nearly optimal results. The FTLS algorithm uses the total least squares method for fitting the lines into the point cloud and the presented augmentation for the refinement of the results, is based on a modified Nelder-Mead method. As shown on several experiments, this approach leads to better utilization of the information contained in the point cloud. As a result, the quality of approximation grows steadily with the number of points being vectorized, which was not achieved before. Performance costs are still comparable to the original algorithm, so the real-time operation is not endangered.
Název v anglickém jazyce
Augmented Postprocessing of the FTLS Vectorization Algorithm
Popis výsledku anglicky
Vectorization is a widely used technique in many areas, mainly in robotics and image processing. Applications in these domains frequently require both speed (for real-time operation) and accuracy (for maximal information gain). This paper proposes an optimization for the high speed vectorization methods, which leads to nearly optimal results. The FTLS algorithm uses the total least squares method for fitting the lines into the point cloud and the presented augmentation for the refinement of the results, is based on a modified Nelder-Mead method. As shown on several experiments, this approach leads to better utilization of the information contained in the point cloud. As a result, the quality of approximation grows steadily with the number of points being vectorized, which was not achieved before. Performance costs are still comparable to the original algorithm, so the real-time operation is not endangered.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 13th International Conference on Informatics in Control, Automation and Robotics (ICINCO 2016) - Volume 2
ISBN
978-989-758-198-4
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
216-223
Název nakladatele
Neuveden
Místo vydání
Lisabon
Místo konání akce
Lisabon
Datum konání akce
29. 7. 2016
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000392601900022