Point Cloud Color Constancy
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F22%3A00362949" target="_blank" >RIV/68407700:21230/22:00362949 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/CVPR52688.2022.01913" target="_blank" >https://doi.org/10.1109/CVPR52688.2022.01913</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/CVPR52688.2022.01913" target="_blank" >10.1109/CVPR52688.2022.01913</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Point Cloud Color Constancy
Popis výsledku v původním jazyce
In this paper, we present Point Cloud Color Constancy, in short PCCC, an illumination chromaticity estimation algorithm exploiting a point cloud. We leverage the depth information captured by the time-of-flight (ToF) sensor mounted rigidly with the RGB sensor, and form a 6D cloud where each point contains the coordinates and RGB intensities, noted as (x,y,z,r,g,b). PCCC applies the PointNet architecture to the color constancy problem, deriving the illumination vector point-wise and then making a global decision about the global illumination chromaticity. On two popular RGB-D datasets, which we extend with illumination information, as well as on a novel benchmark, PCCC obtains lower error than the state-of-the-art algorithms. Our method is simple and fast, requiring merely 16 x 16-size input and reaching speed over 140 fps (CPU time), including the cost of building the point cloud and net inference.
Název v anglickém jazyce
Point Cloud Color Constancy
Popis výsledku anglicky
In this paper, we present Point Cloud Color Constancy, in short PCCC, an illumination chromaticity estimation algorithm exploiting a point cloud. We leverage the depth information captured by the time-of-flight (ToF) sensor mounted rigidly with the RGB sensor, and form a 6D cloud where each point contains the coordinates and RGB intensities, noted as (x,y,z,r,g,b). PCCC applies the PointNet architecture to the color constancy problem, deriving the illumination vector point-wise and then making a global decision about the global illumination chromaticity. On two popular RGB-D datasets, which we extend with illumination information, as well as on a novel benchmark, PCCC obtains lower error than the state-of-the-art algorithms. Our method is simple and fast, requiring merely 16 x 16-size input and reaching speed over 140 fps (CPU time), including the cost of building the point cloud and net inference.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Výzkumné centrum informatiky</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceeding 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
ISBN
978-1-6654-6946-3
ISSN
1063-6919
e-ISSN
2575-7075
Počet stran výsledku
10
Strana od-do
19718-19727
Název nakladatele
IEEE
Místo vydání
Piscataway
Místo konání akce
New Orleans, Louisiana
Datum konání akce
19. 6. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000870783005054