Catalan pairs and Fishburn triples
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F15%3A10312943" target="_blank" >RIV/00216208:11320/15:10312943 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.aam.2015.06.007" target="_blank" >http://dx.doi.org/10.1016/j.aam.2015.06.007</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.aam.2015.06.007" target="_blank" >10.1016/j.aam.2015.06.007</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Catalan pairs and Fishburn triples
Popis výsledku v původním jazyce
Disanto, Ferrari, Pinzani and Rinaldi have introduced the concept of Catalan pair, which is a pair of partial orders (S, R) satisfying certain axioms. They have shown that Catalan pairs provide a natural description of objects belonging to several classes enumerated by Catalan numbers. In this paper, we first introduce another axiomatic structure (T, R), which we call the Catalan pair of type 2, which describes certain Catalan objects that do not seem to have an easy interpretation in terms of the original Catalan pairs. We then introduce Fishburn triples, which are relational structures obtained as a direct common generalization of the two types of Catalan pairs. Fishburn triples encode, in a natural way, the structure of objects enumerated by the Fishburn numbers, such as interval orders or Fishburn matrices. This connection between Catalan objects and Fishburn objects allows us to associate known statistics on Catalan objects with analogous statistics of Fishburn objects. As our mai
Název v anglickém jazyce
Catalan pairs and Fishburn triples
Popis výsledku anglicky
Disanto, Ferrari, Pinzani and Rinaldi have introduced the concept of Catalan pair, which is a pair of partial orders (S, R) satisfying certain axioms. They have shown that Catalan pairs provide a natural description of objects belonging to several classes enumerated by Catalan numbers. In this paper, we first introduce another axiomatic structure (T, R), which we call the Catalan pair of type 2, which describes certain Catalan objects that do not seem to have an easy interpretation in terms of the original Catalan pairs. We then introduce Fishburn triples, which are relational structures obtained as a direct common generalization of the two types of Catalan pairs. Fishburn triples encode, in a natural way, the structure of objects enumerated by the Fishburn numbers, such as interval orders or Fishburn matrices. This connection between Catalan objects and Fishburn objects allows us to associate known statistics on Catalan objects with analogous statistics of Fishburn objects. As our mai
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Centrum excelence - Institut teoretické informatiky (CE-ITI)</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Advances in Applied Mathematics
ISSN
0196-8858
e-ISSN
—
Svazek periodika
70
Číslo periodika v rámci svazku
September
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
31
Strana od-do
1-31
Kód UT WoS článku
000361255600001
EID výsledku v databázi Scopus
2-s2.0-84939799023