Testing Planarity of Partially Embedded Graphs
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F15%3A10312944" target="_blank" >RIV/00216208:11320/15:10312944 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1145/2629341" target="_blank" >http://dx.doi.org/10.1145/2629341</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/2629341" target="_blank" >10.1145/2629341</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Testing Planarity of Partially Embedded Graphs
Popis výsledku v původním jazyce
We study the following problem: given a planar graph G and a planar drawing (embedding) of a subgraph of G, can such a drawing be extended to a planar drawing of the entire graph G? This problem fits the paradigm of extending a partial solution for a problem to a complete one, which has been studied before in many different settings. Unlike many cases, in which the presence of a partial solution in the input makes an otherwise easy problem hard, we show that the planarity question remains polynomial-time solvable. Our algorithm is based on several combinatorial lemmas, which show that the planarity of partially embedded graphs exhibits the 'TONCAS' behavior "the obvious necessary conditions for planarity are also sufficient." These conditions are expressed in terms of the interplay between (1) the rotation system and containment relationships between cycles and (2) the decomposition of a graph into its connected, biconnected, and triconnected components. This implies that no dynamic pr
Název v anglickém jazyce
Testing Planarity of Partially Embedded Graphs
Popis výsledku anglicky
We study the following problem: given a planar graph G and a planar drawing (embedding) of a subgraph of G, can such a drawing be extended to a planar drawing of the entire graph G? This problem fits the paradigm of extending a partial solution for a problem to a complete one, which has been studied before in many different settings. Unlike many cases, in which the presence of a partial solution in the input makes an otherwise easy problem hard, we show that the planarity question remains polynomial-time solvable. Our algorithm is based on several combinatorial lemmas, which show that the planarity of partially embedded graphs exhibits the 'TONCAS' behavior "the obvious necessary conditions for planarity are also sufficient." These conditions are expressed in terms of the interplay between (1) the rotation system and containment relationships between cycles and (2) the decomposition of a graph into its connected, biconnected, and triconnected components. This implies that no dynamic pr
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GEGIG%2F11%2FE023" target="_blank" >GEGIG/11/E023: Kreslení grafů a jejich geometrické reprezentace</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ACM Transactions on Algorithms
ISSN
1549-6325
e-ISSN
—
Svazek periodika
11
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
42
Strana od-do
1-42
Kód UT WoS článku
000357122300008
EID výsledku v databázi Scopus
—