Column Planarity and Partially-Simultaneous Geometric Embedding
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F17%3A00483679" target="_blank" >RIV/67985807:_____/17:00483679 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.7155/jgaa.00446" target="_blank" >http://dx.doi.org/10.7155/jgaa.00446</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.7155/jgaa.00446" target="_blank" >10.7155/jgaa.00446</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Column Planarity and Partially-Simultaneous Geometric Embedding
Popis výsledku v původním jazyce
We introduce the notion of column planarity of a subset R of the vertices of a graph G. Informally, we say that R is column planar in G if we can assign x-coordinates to the vertices in R such that any assignment of y-coordinates to them produces a partial embedding that can be completed to a plane straight-line drawing of G. Column planarity is both a relaxation and a strengthening of unlabeled level planarity. We prove near tight bounds for the maximum size of column planar subsets of trees: every tree on n vertices contains a column planar set of size at least 14n/17 and for any epsilon > 0 and any sufficiently large n, there exists an n-vertex tree in which every column planar subset has size at most (5/6 + epsilon)n. In addition, we show that every outerplanar graph has a column planar set of size at least n/2. We also consider a relaxation of simultaneous geometric embedding (SGE), which we call partially-simultaneous geometric embedding (PSGE). A PSGE of two graphs G 1 and G 2 allows some of their vertices to map to two different points in the plane. We show how to use column planar subsets to construct k-PSGEs, which are PSGEs in which at least k vertices are mapped to the same point for both graphs. In particular, we show that every two trees on n vertices admit an 11n/17-PSGE and every two outerplanar graphs admit an n/4-PSGE.
Název v anglickém jazyce
Column Planarity and Partially-Simultaneous Geometric Embedding
Popis výsledku anglicky
We introduce the notion of column planarity of a subset R of the vertices of a graph G. Informally, we say that R is column planar in G if we can assign x-coordinates to the vertices in R such that any assignment of y-coordinates to them produces a partial embedding that can be completed to a plane straight-line drawing of G. Column planarity is both a relaxation and a strengthening of unlabeled level planarity. We prove near tight bounds for the maximum size of column planar subsets of trees: every tree on n vertices contains a column planar set of size at least 14n/17 and for any epsilon > 0 and any sufficiently large n, there exists an n-vertex tree in which every column planar subset has size at most (5/6 + epsilon)n. In addition, we show that every outerplanar graph has a column planar set of size at least n/2. We also consider a relaxation of simultaneous geometric embedding (SGE), which we call partially-simultaneous geometric embedding (PSGE). A PSGE of two graphs G 1 and G 2 allows some of their vertices to map to two different points in the plane. We show how to use column planar subsets to construct k-PSGEs, which are PSGEs in which at least k vertices are mapped to the same point for both graphs. In particular, we show that every two trees on n vertices admit an 11n/17-PSGE and every two outerplanar graphs admit an n/4-PSGE.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Graph Algorithms and Applications
ISSN
1526-1719
e-ISSN
—
Svazek periodika
21
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
20
Strana od-do
983-1002
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85037335542