On generalized elliptical quantiles in the nonlinear quantile regression setup
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F15%3A10314011" target="_blank" >RIV/00216208:11320/15:10314011 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/67985556:_____/15:00434510
Výsledek na webu
<a href="http://dx.doi.org/10.1007/s11749-014-0405-3" target="_blank" >http://dx.doi.org/10.1007/s11749-014-0405-3</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11749-014-0405-3" target="_blank" >10.1007/s11749-014-0405-3</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On generalized elliptical quantiles in the nonlinear quantile regression setup
Popis výsledku v původním jazyce
Inspired by nonlinear quantile regression, the article introduces, investigates, discusses, and illustrates a new concept of generalized elliptical location quantiles. They may require less stringent moment assumptions, be less sensitive to outliers, beless rigid, employ more a priori information regarding the location of the distribution, and have higher potential for various regression generalizations than their common elliptical predecessor defined in the convex optimization framework by means of standard linear quantile regression. Furthermore, they still include an equivalent of their predecessor as a special case and inherit most of its favorable features such as the probability interpretation, natural equivariance properties, and good behaviorfor elliptical and symmetric distributions, which is demonstrated both by theoretical results and data examples with convincing graphical output. On the other hand, the new elliptical quantiles need not always be uniquely defined and they
Název v anglickém jazyce
On generalized elliptical quantiles in the nonlinear quantile regression setup
Popis výsledku anglicky
Inspired by nonlinear quantile regression, the article introduces, investigates, discusses, and illustrates a new concept of generalized elliptical location quantiles. They may require less stringent moment assumptions, be less sensitive to outliers, beless rigid, employ more a priori information regarding the location of the distribution, and have higher potential for various regression generalizations than their common elliptical predecessor defined in the convex optimization framework by means of standard linear quantile regression. Furthermore, they still include an equivalent of their predecessor as a special case and inherit most of its favorable features such as the probability interpretation, natural equivariance properties, and good behaviorfor elliptical and symmetric distributions, which is demonstrated both by theoretical results and data examples with convincing graphical output. On the other hand, the new elliptical quantiles need not always be uniquely defined and they
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA14-07234S" target="_blank" >GA14-07234S: Mnohorozměrné regresní kvantily v ekonometrii</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Test
ISSN
1133-0686
e-ISSN
—
Svazek periodika
24
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
ES - Španělské království
Počet stran výsledku
16
Strana od-do
249-264
Kód UT WoS článku
000354714100004
EID výsledku v databázi Scopus
2-s2.0-84929837079