Use Cases for Linked Data Visualization Model
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F15%3A10314608" target="_blank" >RIV/00216208:11320/15:10314608 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21240/15:00235637
Výsledek na webu
<a href="http://ceur-ws.org/Vol-1409/paper-08.pdf" target="_blank" >http://ceur-ws.org/Vol-1409/paper-08.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Use Cases for Linked Data Visualization Model
Popis výsledku v původním jazyce
There is a vast amount of Linked Data on the web spread across a large number of datasets. One of the visions behind Linked Data is that the published data is conveniently reusable by others. This, however, depends on many details such as conformance ofthe data with commonly used vocabularies and adherence to best practices for data modeling. Therefore, when an expert wants to reuse existing datasets, he still needs to analyze them to discover how the data is modeled and what it actually contains. Thismay include analysis of what entities are there, how are they linked to other entities, which properties from which vocabularies are used, etc. What is missing is a convenient and fast way of seeing what could be usable in the chosen unknown dataset without reading through its RDF serialization. In this paper we describe use cases based on this problem and their realization using our Linked Data Visualization Model (LDVM) and its new implementation. LDVM is a formal base that exploits t
Název v anglickém jazyce
Use Cases for Linked Data Visualization Model
Popis výsledku anglicky
There is a vast amount of Linked Data on the web spread across a large number of datasets. One of the visions behind Linked Data is that the published data is conveniently reusable by others. This, however, depends on many details such as conformance ofthe data with commonly used vocabularies and adherence to best practices for data modeling. Therefore, when an expert wants to reuse existing datasets, he still needs to analyze them to discover how the data is modeled and what it actually contains. Thismay include analysis of what entities are there, how are they linked to other entities, which properties from which vocabularies are used, etc. What is missing is a convenient and fast way of seeing what could be usable in the chosen unknown dataset without reading through its RDF serialization. In this paper we describe use cases based on this problem and their realization using our Linked Data Visualization Model (LDVM) and its new implementation. LDVM is a formal base that exploits t
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the Workshop on Linked Data on the Web co-located with the 24th International World Wide Web Conference (WWW 2015)
ISBN
—
ISSN
1613-0073
e-ISSN
—
Počet stran výsledku
10
Strana od-do
—
Název nakladatele
CEUR Workshop Proceedings
Místo vydání
Neuveden
Místo konání akce
Florence, Italy
Datum konání akce
19. 5. 2015
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—