Tight lower bounds for the online labeling problem
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F15%3A10316299" target="_blank" >RIV/00216208:11320/15:10316299 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1137/130907653" target="_blank" >http://dx.doi.org/10.1137/130907653</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1137/130907653" target="_blank" >10.1137/130907653</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Tight lower bounds for the online labeling problem
Popis výsledku v původním jazyce
We consider the file maintenance problem (also called the online labeling problem) in which n integer items from the set {1,..., r} are to be stored in an array of size m }= n. The items are presented sequentially in an arbitrary order, and must be stored in the array in sorted order (but not necessarily in consecutive locations in the array). Each new item must be stored in the array before the next item is received. If r < = m then we can simply store item j in location j but if r > m then we may haveto shift the location of stored items to make space for a newly arrived item. The algorithm is charged each time an item is stored in the array, or moved to a new location. The goal is to minimize the total number of moves the algorithm has to do. Thisproblem is nontrivial for n < = m < r. In the case that m = Cn for some C > 1, algorithms are known that solve the problem with cost O(n log(2)(n)) (independent of r). For the case m = n, algorithms with cost O(n log(3)(n)) were given. In
Název v anglickém jazyce
Tight lower bounds for the online labeling problem
Popis výsledku anglicky
We consider the file maintenance problem (also called the online labeling problem) in which n integer items from the set {1,..., r} are to be stored in an array of size m }= n. The items are presented sequentially in an arbitrary order, and must be stored in the array in sorted order (but not necessarily in consecutive locations in the array). Each new item must be stored in the array before the next item is received. If r < = m then we can simply store item j in location j but if r > m then we may haveto shift the location of stored items to make space for a newly arrived item. The algorithm is charged each time an item is stored in the array, or moved to a new location. The goal is to minimize the total number of moves the algorithm has to do. Thisproblem is nontrivial for n < = m < r. In the case that m = Cn for some C > 1, algorithms are known that solve the problem with cost O(n log(2)(n)) (independent of r). For the case m = n, algorithms with cost O(n log(3)(n)) were given. In
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
SIAM Journal on Computing
ISSN
0097-5397
e-ISSN
—
Svazek periodika
44
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
33
Strana od-do
1765-1797
Kód UT WoS článku
000367020300008
EID výsledku v databázi Scopus
—