ON ONLINE LABELING WITH LARGE LABEL SET
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10404560" target="_blank" >RIV/00216208:11320/19:10404560 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=mHE4CuXDtX" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=mHE4CuXDtX</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1137/17M1117458" target="_blank" >10.1137/17M1117458</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
ON ONLINE LABELING WITH LARGE LABEL SET
Popis výsledku v původním jazyce
In the online labeling problem with parameters n and m we are presented with a sequence of n items from a totally ordered universe U and must assign each arriving item a label from the label set {1, ..., m} so that the order of labels respects the order on U. As new items arrive it may be necessary to change the labels of some items; such changes may be done at any time at unit cost for each change. The goal is to minimize the total cost. An alternative formulation of this problem is the file maintenance problem, in which the items are maintained in sorted order in an array of length m, and we pay unit cost for moving an item. For the case m = en for constant c > 1, an algorithm of Itai, Konheim, and Rodeh (1981) achieves total cost O(m(logn)(2)), which is asymptotically optimal (Bulanek, Koucky, and Saks (2015)). For the case of m = Theta(n(l +C)) for constant C > 0, algorithms are known that use 0(n logn) relabelings. A matching lower bound was provided in Dietz, Seiferas, and Zhang (2005). The lower bound proof had two parts: a lower bound for a problem called prefix bucketing and a reduction from prefix bucketing to online labeling. We present a simplified version of their reduction, together with a full proof (which was not given in Dietz, Seiferas, and Zhang (2004)). We also simplify and improve the analysis of the prefix bucketing lower bound. This improvement allows us to extend the lower bounds for online labeling to larger m. Our lower bound for m from n(1+C) to 2(n) is Omega((nlogn)/(log log m - log log n)). This reduces to the asymptotically optimal bound Omega(nlogn) when m = Theta(n(l+C)). We show that our bound is asymptotically optimal for the case of m >= 2(1+(log n)3) by giving a matching upper bound.
Název v anglickém jazyce
ON ONLINE LABELING WITH LARGE LABEL SET
Popis výsledku anglicky
In the online labeling problem with parameters n and m we are presented with a sequence of n items from a totally ordered universe U and must assign each arriving item a label from the label set {1, ..., m} so that the order of labels respects the order on U. As new items arrive it may be necessary to change the labels of some items; such changes may be done at any time at unit cost for each change. The goal is to minimize the total cost. An alternative formulation of this problem is the file maintenance problem, in which the items are maintained in sorted order in an array of length m, and we pay unit cost for moving an item. For the case m = en for constant c > 1, an algorithm of Itai, Konheim, and Rodeh (1981) achieves total cost O(m(logn)(2)), which is asymptotically optimal (Bulanek, Koucky, and Saks (2015)). For the case of m = Theta(n(l +C)) for constant C > 0, algorithms are known that use 0(n logn) relabelings. A matching lower bound was provided in Dietz, Seiferas, and Zhang (2005). The lower bound proof had two parts: a lower bound for a problem called prefix bucketing and a reduction from prefix bucketing to online labeling. We present a simplified version of their reduction, together with a full proof (which was not given in Dietz, Seiferas, and Zhang (2004)). We also simplify and improve the analysis of the prefix bucketing lower bound. This improvement allows us to extend the lower bounds for online labeling to larger m. Our lower bound for m from n(1+C) to 2(n) is Omega((nlogn)/(log log m - log log n)). This reduces to the asymptotically optimal bound Omega(nlogn) when m = Theta(n(l+C)). We show that our bound is asymptotically optimal for the case of m >= 2(1+(log n)3) by giving a matching upper bound.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
SIAM Journal on Discrete Mathematics
ISSN
0895-4801
e-ISSN
—
Svazek periodika
33
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
19
Strana od-do
1175-1193
Kód UT WoS článku
000487856600003
EID výsledku v databázi Scopus
2-s2.0-85071485475