Graph Cores via Universal Completability
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F15%3A10317805" target="_blank" >RIV/00216208:11320/15:10317805 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.sciencedirect.com/science/article/pii/S157106531500092X" target="_blank" >http://www.sciencedirect.com/science/article/pii/S157106531500092X</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.endm.2015.06.046" target="_blank" >10.1016/j.endm.2015.06.046</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Graph Cores via Universal Completability
Popis výsledku v původním jazyce
A framework for a graph G=(V,E), denoted G(p), consists of an assignment of real vectors p=(p1,p2,...,p|V|) to its vertices. A framework G(p) is called universally completable if for any other framework G(q) that satisfies piTpj=qiTqj for i=j and for edges ij there exists an isometry U such that Uqi=pi for all i. A graph is called a core if all its endomorphisms are automorphisms. In this work we identify a new sufficient condition for showing that a graph is a core in terms of the universal completability of an appropriate framework for the graph. To use this condition we develop a method for constructing universally completable frameworks based on the eigenvectors for the smallest eigenspace of the graph. This allows us to recover the known result that the Kneser graph Kn:r and the q-Kneser graph qKn:r are cores for n > = 2r+1. Our proof is simple and does not rely on the use of an Erdős-Ko-Rado type result as do existing proofs. Furthermore, we also show that a new family of graphs
Název v anglickém jazyce
Graph Cores via Universal Completability
Popis výsledku anglicky
A framework for a graph G=(V,E), denoted G(p), consists of an assignment of real vectors p=(p1,p2,...,p|V|) to its vertices. A framework G(p) is called universally completable if for any other framework G(q) that satisfies piTpj=qiTqj for i=j and for edges ij there exists an isometry U such that Uqi=pi for all i. A graph is called a core if all its endomorphisms are automorphisms. In this work we identify a new sufficient condition for showing that a graph is a core in terms of the universal completability of an appropriate framework for the graph. To use this condition we develop a method for constructing universally completable frameworks based on the eigenvectors for the smallest eigenspace of the graph. This allows us to recover the known result that the Kneser graph Kn:r and the q-Kneser graph qKn:r are cores for n > = 2r+1. Our proof is simple and does not rely on the use of an Erdős-Ko-Rado type result as do existing proofs. Furthermore, we also show that a new family of graphs
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Electronic Notes in Discrete Mathematics
ISSN
1571-0653
e-ISSN
—
Svazek periodika
49
Číslo periodika v rámci svazku
November
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
8
Strana od-do
337-344
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—