Universal Completability, Least Eigenvalue Frameworks, and Vector Colorings
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10369131" target="_blank" >RIV/00216208:11320/17:10369131 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/s00454-017-9899-2" target="_blank" >http://dx.doi.org/10.1007/s00454-017-9899-2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00454-017-9899-2" target="_blank" >10.1007/s00454-017-9899-2</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Universal Completability, Least Eigenvalue Frameworks, and Vector Colorings
Popis výsledku v původním jazyce
An embedding $i mapsto p_iin R^d$ of the vertices of a graph $G$ is called universally completable if the following holds: For any other embedding $imapsto q_i~in R^{k}$ satisfying $q_itranspose q_j = p_itranspose p_j$ for $i = j$ and $i$ adjacent to $j$, there exists an isometry mapping the $q_i$'s to the $p_i$'s for all $ iin V(G)$. The notion of universal completability was introduced recently due to its relevance to the positive semidefinite matrix completion problem. In this work we focus on graph embeddings constructed using the eigenvectors of the least eigenvalue of the adjacency matrix of $G$, which we call least eigenvalue frameworks. We identify two necessary and sufficient conditions for such frameworks to be universally completable. Our conditions also allow us to give algorithms for determining whether a least eigenvalue framework is universally completable. Furthermore, our computations for Cayley graphs on $Z_2^n (n le 5)$ show that almost all of these graphs have universally completable least eigenvalue frameworks. In the second part of this work we study uniquely vector colorable (UVC) graphs, i.e., graphs for which the semidefinite program corresponding to the Lovász theta number (of the complementary graph) admits a unique optimal solution. We identify a sufficient condition for showing that a graph is UVC based on the universal completability of an associated framework. This allows us to prove that Kneser and $q$-Kneser graphs are UVC. Lastly, we show that least eigenvalue frameworks of 1-walk-regular graphs always provide optimal vector colorings and furthermore, we are able to characterize all optimal vector colorings of such graphs. In particular, we give a necessary and sufficient condition for a 1-walk-regular graph to be uniquely vector~colorable.
Název v anglickém jazyce
Universal Completability, Least Eigenvalue Frameworks, and Vector Colorings
Popis výsledku anglicky
An embedding $i mapsto p_iin R^d$ of the vertices of a graph $G$ is called universally completable if the following holds: For any other embedding $imapsto q_i~in R^{k}$ satisfying $q_itranspose q_j = p_itranspose p_j$ for $i = j$ and $i$ adjacent to $j$, there exists an isometry mapping the $q_i$'s to the $p_i$'s for all $ iin V(G)$. The notion of universal completability was introduced recently due to its relevance to the positive semidefinite matrix completion problem. In this work we focus on graph embeddings constructed using the eigenvectors of the least eigenvalue of the adjacency matrix of $G$, which we call least eigenvalue frameworks. We identify two necessary and sufficient conditions for such frameworks to be universally completable. Our conditions also allow us to give algorithms for determining whether a least eigenvalue framework is universally completable. Furthermore, our computations for Cayley graphs on $Z_2^n (n le 5)$ show that almost all of these graphs have universally completable least eigenvalue frameworks. In the second part of this work we study uniquely vector colorable (UVC) graphs, i.e., graphs for which the semidefinite program corresponding to the Lovász theta number (of the complementary graph) admits a unique optimal solution. We identify a sufficient condition for showing that a graph is UVC based on the universal completability of an associated framework. This allows us to prove that Kneser and $q$-Kneser graphs are UVC. Lastly, we show that least eigenvalue frameworks of 1-walk-regular graphs always provide optimal vector colorings and furthermore, we are able to characterize all optimal vector colorings of such graphs. In particular, we give a necessary and sufficient condition for a 1-walk-regular graph to be uniquely vector~colorable.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Discrete and Computational Geometry
ISSN
0179-5376
e-ISSN
—
Svazek periodika
58
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
28
Strana od-do
265-292
Kód UT WoS článku
000406409600002
EID výsledku v databázi Scopus
—